K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Gợi ý cách giải: Thế a = 1 - b - c vào P sau đó phân tích số chính phương là ra

2 tháng 12 2017

\(2\sqrt{2}\)

25 tháng 8 2021

anh/chị giúp em với ạ!

14 tháng 8 2021

Ta có: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

2 tháng 11 2018

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)

\(=\left(a^2+ab+bc+ac\right)\left(b^2+ab+bc+ac\right)\left(c^2+ab+bc+ac\right)\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(b+c\right)+a\left(b+c\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\rightarrow scp\)

5 tháng 4

Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
          =a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
           =b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.

 

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg