Cho C= (x+y+z)(xy+yz+zx)-xyz
a) Phân tích C thành nhân tử
b) Cho x, y, z là 3 số nguyên có tổng chia hết cho 6 Chứng minh (x+y)(y+z)(z+x)-2xyz chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)(y+z)(z+x)-2xyz
⇒(x+y+z)-z(x+y+z)-x(x+y+z)-y-2xyz
⇒(x+y+z)nhân-(x+y+z)-2xyz
⇒6(-6)-2xyz⋮6
⇒(x+y)(y+z)(z+x)-2xyz⋮6
Ta có
x2-yz=a
y2-zx=b
z2-xy=c
=>x3-xyz=ax
y3-xyz=by
z3-xyz=cz
=> x3+y3+z3-3xyz=ax+by+cz
Lại có
x3+y3+z3-3xyz
=(x+y)3-3x2y-3xy2+z3-3xyz
=[(x+y)3+z3]-3xy(x+y+z)
Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:
=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)
ak mình nhầm tẹo srr nha, đến chỗ
(x+y+z)(x2+y2+z2-xy-yz-zx)
Vì x2-yz=a, y2-zx=b, z2- xy=c
=>x2+y2+z2-xy-yz-zx=a+b+c
=>ax+by+cz=(x+y+z)(a+b+c)
=> DPCM
a/ \(C=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b/ Ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)
Vì \(x+y+z⋮6\)
Nên trong 3 số x, y, z có ít nhất 1 số chẵn
\(\Rightarrow3xyz⋮6\)
\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz⋮6\)