\(\frac{1}{2}\)+\(\frac{1}{21}\)+\(\frac{1}{22}\)+...+\(\frac{1}{210}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)
^^
Ta thấy: \(\frac{1}{3}\)- \(\frac{1}{30}\)- \(\frac{1}{5}\)- \(\frac{1}{10}\)
= \(\frac{10}{30}\)- \(\frac{1}{30}\)- \(\frac{6}{30}\)- \(\frac{3}{30}\)= 0
nên gtbt trên bằng 0
a: \(=\dfrac{1}{280}-\dfrac{1}{70}=\dfrac{1}{280}-\dfrac{4}{280}=-\dfrac{3}{280}\)
b: \(=\dfrac{200}{37}\left(\dfrac{85}{26}-\dfrac{59}{26}\right)=\dfrac{200}{37}\)
c: \(=2+\dfrac{2}{2+\dfrac{2}{2+\dfrac{2}{\dfrac{5}{2}}}}=2+\dfrac{2}{2+\dfrac{2}{2+\dfrac{4}{5}}}=2+\dfrac{2}{2+\dfrac{5}{7}}\)
\(=2+2:\dfrac{19}{7}=2+\dfrac{14}{19}=\dfrac{38+14}{19}=\dfrac{52}{19}\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)
Chứng minh: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}< \frac{3}{2}\).
tách bất đẳng thức trên ta có \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)gọi biều thức này là A
ta có \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)
\(\Rightarrow A>20.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+40.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)nhân vế trái vs 20 vế phải 40
\(\Rightarrow A>20.\left(\frac{1}{20}-\frac{1}{40}\right)+40.\left(\frac{1}{40}-\frac{1}{60}\right)\)
\(\Rightarrow A>\frac{5}{6}>\frac{11}{5}\left(1\right)\)
ta có \(A< 40.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+60.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)
\(\Rightarrow A< 40.\left(\frac{1}{20}-\frac{1}{40}\right)+60.\left(\frac{1}{40}-\frac{1}{60}\right)\)
\(\Rightarrow A< \frac{3}{2}\left(2\right)\)
từ (1) và (2)
\(\Rightarrow\frac{11}{15}< A< \frac{3}{2}\)
\(\Rightarrow\frac{11}{15}< \text{}\text{}\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+..+\frac{1}{60}< \frac{3}{2}\)(ĐPCM)
Đặt \(C=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{60}=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Ta có: \(\frac{1}{21}>\frac{1}{40};\frac{1}{22}>\frac{1}{40};....\frac{1}{39}>\frac{1}{40}\)
\(\Rightarrow\frac{1}{21}+\frac{1}{22}+....+\frac{1}{39}+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\)
\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...\frac{1}{59}>\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{60}.20=\frac{1}{3}\)
\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}>\frac{11}{15}\)
Vậy \(C>\frac{11}{15}\) (1)
Lại có: \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...\frac{1}{40}< \frac{1}{20}\)
\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}+....+\frac{1}{20}=\frac{1}{20}.20=1\)
\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...\frac{1}{60}< \frac{1}{40}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\)
\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{1}{2}+1=\frac{3}{2}\)
Vậy \(C< \frac{3}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{3}{2}\)