K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2023

Lời giải:

Gọi $ƯCLN(a,b)=d$

$\Rightarrow a\vdots d$ và $b\vdots d$

$\Rightarrow 4n+3\vdots d$ và $5n+1\vdots d$

$\Rightarrow 5(4n+3)-4(5n+1)\vdots d$

$\Rightarrow 11\vdots d\Rightarrow d\in\left\{1; 11\right\}$

Vì $a,b$ không nguyên tố cùng nhau nên $d\neq 1$

$\Rightarrow d=11$.

9 tháng 11 2015

1.

gọi UCLN(n+1;3n+4) là d

ta có :

n+1 chia hết cho d=>3(n+1) chia hết cho d =>3n+3 chia hết cho d

=>3n+4 chia hết cho d

=>(3n+4)-(3n+3) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(n+1;3n+4)=1

=>n+1;3n+4 là hai số nguyên tố cùng nhau

6 tháng 9 2015

1)Gọi ƯC(3n+4,5n+7)=d

=>3n+4 chia hết cho d=>5.(3n+4)=15n+20 chia hết cho d

     5n+7 chia hết cho d=>3.(5n+7)=15n+21 chia hết cho d

=>15n+21-15n-20 chia hết cho d

=>1 chia hết cho d

=>d=Ư(1)=1

=>ƯC(3n+4,5n+7)=1

=>3n+4 và 5n+7 là 2 số nguyên tố cùng nhau

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

1 tháng 1 2016

tick đi tôi giải cho

1 tháng 1 2016

​Bài 1:

Gọi UCLN của n+1 và 3n+4 là d.

​Suy ra:n+1 chia hết cho d

​3n+4 chia hết cho d

​Suy ra:3n+3 chia hết cho d

​3n+4 chia hết cho d

Suy ra:(3n+4)-(3n+3) chia het cho d

​Suy ra:       1        chia hết cho d

​Vậy d=1.

VẬY 2 SỐ n+1 VÀ 3n+4 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU>

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

11 tháng 11 2015

1)

Gọi d là ƯC(n+2;3n+5) (d thuộc N*)

=>n+2 chia hết cho d =>3n+6 chia hết cho d

=>3n+5 chia hết cho d

=>3n+6-3n-5 chia hết cho  d

=>1 chia hết cho d

=>d=1 =>(n+2;3n+5)=1

=>ĐPCM