K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

a) ĐKXĐ: a\(\ge\)0, a\(\ne\)1

A=(\(\dfrac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\dfrac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

A=\(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\).\(\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

A=\(\dfrac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}.\dfrac{\sqrt{a}+1}{\sqrt{a}}\)=\(\dfrac{2}{a-1}\)

b) Để A\(\in\)Z\(\Rightarrow\)x-1\(\in\) Ư(2)=\(\left\{-1,1,-2,2\right\}\)

x-1-2-112
x-1023

vì x\(\ge\)0,x\(\ne\)1 nên x\(\in\)\(\left\{-1,0,2,3\right\}\)

a) Ta có: \(P=\left(\dfrac{1}{1-\sqrt{a}}-\dfrac{1}{1+\sqrt{a}}\right)\cdot\left(1-\dfrac{1}{\sqrt{a}}\right)\)

\(=\dfrac{1+\sqrt{a}-1+\sqrt{a}}{-\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}-1}{\sqrt{2}}\)

\(=\dfrac{-2}{\sqrt{a}+1}\)

b) Ta có: \(P=\dfrac{-1}{2}\)

nên \(\dfrac{2}{\sqrt{a}+1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{a}+1=4\)

\(\Leftrightarrow a=9\)(thỏa ĐK)

17 tháng 11 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

\(A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{3-x+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{-3}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}=\dfrac{3}{\sqrt{x}-2}\)

b: A<1

=>A-1<0

=>\(\dfrac{3-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}-2}>0\)

TH1: \(\left\{{}\begin{matrix}\sqrt{x}-5>0\\\sqrt{x}-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>5\\\sqrt{x}>2\end{matrix}\right.\Leftrightarrow\sqrt{x}>5\)

=>x>25

TH2: \(\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}< 5\end{matrix}\right.\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

22 tháng 10 2021

a: \(Q=\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{a+\sqrt{a}}\right):\dfrac{\sqrt{a}-1}{a+2\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\cdot\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}-1}\)

\(=\dfrac{a+2\sqrt{a}+1}{a-\sqrt{a}}\)

22 tháng 10 2021

bn có thể giúp mk nốt 2 câu đc ko

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

6 tháng 8 2021

a, A= \(\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{x}{\sqrt{x}+2}\right)\)

A=\(\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)}+\frac{x}{\sqrt{x}+2}\right)\)

A=\(\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\frac{\sqrt{x}+x}{\left(\sqrt{x}+2\right)}\right)\)

A=\(\frac{1}{x+2\sqrt{x}}\)

b, A >= \(\frac{1}{3\sqrt{x}}\)

=> \(\frac{1}{x+2\sqrt{x}}\) >= \(\frac{1}{3\sqrt{x}}\)

=> x <= -1 , x >= 4 (x khác 0)