Tính nhanh:
\(\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+........+\frac{1}{60.61};\)
\(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+........+\frac{4}{45.49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{29.30}\right)280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{29}-\frac{1}{30}\right).280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{30}\right)280\)
<=> \(12-10,34.\frac{3}{13}\left(x-1\right)=4\)
<=> \(8=10,34.\frac{3}{13}.\left(x-1\right)\)
<=> \(x-1=\frac{5200}{1551}\)
<=> \(x=\frac{6751}{1551}\)
Ta có:
\(\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{29.30}=\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{29}-\frac{1}{30}=\frac{1}{21}-\frac{1}{30}\)
phương trình đã cho trở thành
\(12-10,34.\frac{3}{13}\left(x-1\right)=\left(\frac{1}{21}-\frac{1}{30}\right).280\)
\(\Leftrightarrow x-1=\frac{\left(\frac{1}{21}-\frac{1}{30}\right).280-12}{-10,34.\frac{3}{13}}\Leftrightarrow x=\frac{\left(\frac{1}{21}-\frac{1}{30}\right).280-12}{-10,34.\frac{3}{13}}+1\)
\(\Leftrightarrow x=\frac{6751}{1551}\)
Ta có: \(S=20.21+21.22+22.23+....+39.40\)
\(\Rightarrow3S=3.20.21+3.21.22+.....+3.39.40\)
\(\Rightarrow3S=20.21.\left(22-19\right)+22.23.\left(24-21\right)+.....+39.40.\left(41-38\right)\)
\(\Rightarrow3S=39.40.41-19.20.21\)
\(\Rightarrow3S=55980\)
\(\Rightarrow S=18660\)
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{21.22}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{21}-\frac{1}{22}\)
\(A=\frac{1}{5}-\frac{1}{22}\)
\(A=\frac{17}{110}\)
\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+...+\(\frac{1}{21.22}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+...+\(\frac{1}{21}\)-\(\frac{1}{22}\)
=\(\frac{1}{5}\)-\(\frac{1}{22}\)
=\(\frac{17}{110}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(=2\left(1-\frac{1}{21}\right)=2.\frac{20}{21}=\frac{40}{21}\)
Ta có:
\(\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{60.61}\)
\(=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{60}-\frac{1}{61}\)
\(=\frac{1}{2}-\frac{1}{61}=\frac{59}{122}\)
b) \(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{45.49}\)
\(=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{45.49}\)
\(=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{45}-\frac{1}{49}\)
\(=\frac{1}{5}-\frac{1}{49}=\frac{44}{245}\)
Bn Tấn sai rùi
phần a , câu cuối là \(\frac{1}{20}\)chứ đâu phải \(\frac{1}{2}\)