cho (O) và A nằm trong đường tròn (A khác O). Tìm trên đường tròn điểm M sao cho \(\widehat{OMA}\)lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Dễ dàng chứng minh được OA chính là đường trung bình của hình thang HBCK, suy ra A là trung điểm HK => A chính là tâm của đường tròn đường kính HK.
Để chứng minh đường tròn đường kính HK tiếp xúc với BC, ta sẽ chứng minh BC chính là tiếp tuyến của đường tròn (A) tại M hay AM = AK.
Vì HK là tiếp tuyến của (O) tại A nên : \(\widehat{CAK}=\frac{1}{2}\text{sđcungAC}=\widehat{ABC}\left(1\right)\)
Mặt khác, tam giác BAC vuông tại A vì cạnh huyền BC là đường kính của đường tròn (O) . Ta dễ dàng suy ra \(\widehat{ABC}=\widehat{CAM}\left(2\right)\)
Từ (1) và (2) ta có \(\widehat{CAK}=\widehat{CAM}\)
Xét hai tam giác vuông CAM và tam giác vuông CAK có CA là cạnh chung , góc CAM = góc CAK nên \(\Delta CAK=\Delta CAM\left(ch.gn\right)\Rightarrow AK=AM\)
Từ đó suy ra đpcm.
b/ Vì BHKC là hình thang nên \(S_{BHKC}=\frac{\left(BH+CK\right).HK}{2}=OA.HK\)
Từ câu a) ta chứng minh được \(AK=AM\) nên \(HK=2AK=2AM\le2OA\) (hằng số)
=>\(S_{BHKC}\le OA.2OA=2OA^2=2\left(\frac{BC}{2}\right)^2=\frac{BC^2}{2}\) . Dấu "=" xảy ra khi A là điểm chính giữa cung BC.
Vậy ...............................
c/ Đề sai , bởi vì góc MAO có đơn vị độ, còn vế bên phải lại là một tỉ số .
@Hoàng Lê Bảo Ngọc
bn xem có phải k sao cô minh cho đề thế nhỉ
a: Xét ΔOSB có OS=OB=BS(=R)
nên ΔOSB đều
=>\(\widehat{SBO}=60^0\)
Xét (O) có
MS,MQ là các tiếp tuyến
Do đó: MS=MQ
=>M nằm trên đường trung trực của SQ(1)
ta có: OS=OQ
=>O nằm trên đường trung trực của SQ(2)
Từ (1) và (2) suy ra MO là đường trung trực của SQ
=>MO\(\perp\)SQ tại H và H là trung điểm của SQ
Ta có: ΔSOB đều
mà SH là đường cao
nên H là trung điểm của OB
Xét tứ giác OSBQ có
H là trung điểm chung của OB và SQ
=>OSBQ là hình bình hành
Hình bình hành OSBQ có OS=OQ
nên OSBQ là hình thoi
=>\(\widehat{SBQ}+\widehat{OSB}=180^0\)
=>\(\widehat{SBQ}=120^0\)
Xét ΔBSQ có \(cosSBQ=\dfrac{BS^2+BQ^2-SQ^2}{2\cdot BQ\cdot BS}\)
=>\(\dfrac{R^2+R^2-SQ^2}{2\cdot R\cdot R}=cos120=-\dfrac{1}{2}\)
=>\(2R^2-SQ^2=-R^2\)
=>\(SQ^2=3R^2\)
=>\(SQ=R\sqrt{3}\)