Chứng minh đẳng thức
tan2x - sin2x = tan2x . sin2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{2sinx.cosx}{cos2x}-\dfrac{sinx}{cosx}\right)\left(2sinx.cosx-\dfrac{sinx}{cosx}\right)\)
\(=sinx\left(\dfrac{2cosx}{cos2x}-\dfrac{1}{cosx}\right).sinx\left(2cosx-\dfrac{1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{2cos^2x-\left(2cos^2x-1\right)}{cosx.cos2x}\right)\left(\dfrac{2cos^2x-1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{1}{cosx.cos2x}\right)\left(\dfrac{cos2x}{cosx}\right)=\dfrac{sin^2x}{cos^2x}=tan^2x\)
a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)
\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)
\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)
\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)
\(=cot^2x\)
\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)
\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)
\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)
=>VT=VP
b:
\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)
\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)
\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)
\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)
\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)
\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)
\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt
Nhân cả tử và mẫu vế trái với \(cos2x.cosx\) ta được:
\(\frac{sin2x.sinx}{sin2x.cosx-cos2x.sinx}=\frac{sin2x.sinx}{sin\left(2x-x\right)}=\frac{sin2x.sinx}{sinx}=sin2x\)
\(\cos^4x-\sin^4x=\cos^4x-\left(sin^2x.sin^2x\right)=\cos^4x-\left(1-cos^2x\right)\left(1-cos^2x\right)\)
=\(2cos^2x-1=2cos^2x-sin^2x-cos^2x=cos^2x-sin^2x\)
ta có : \(\dfrac{sin2x}{tan\left(\dfrac{\pi}{4}-x\right)\left(1+sin2x\right)}=\dfrac{sin2x}{tan\left(-\left(x-\dfrac{\pi}{4}\right)\right)\left(sin^2x+2sinx.cosx+cos^2x\right)}\)
\(=\dfrac{sin2x}{-tan\left(x-\dfrac{\pi}{4}\right)\left(sinx+cosx\right)^2}=\dfrac{sin2x}{-\dfrac{sin\left(x-\dfrac{\pi}{4}\right)}{cos\left(x-\dfrac{\pi}{4}\right)}\left(sinx+cosx\right)^2}\)
\(=\dfrac{sin2x}{-\dfrac{\dfrac{sinx-cosx}{\sqrt{2}}}{\dfrac{sinx+cosx}{\sqrt{2}}}\left(sinx+cosx\right)^2}=\dfrac{sin2x}{-\left(\dfrac{sinx-cosx}{sinx+cosx}\right)\left(sinx+cosx\right)^2}\)
\(=\dfrac{sin2x}{-\left(sinx-cosx\right)\left(sinx+cosx\right)}=\dfrac{sin2x}{-\left(sin^2x-cos^2x\right)}\)
\(=\dfrac{sin2x}{cos^2x-sin^2x}=\dfrac{sin2x}{cos2x}=tan2x\left(đpcm\right)\)
\(180^o< x< 270^o\)
\(1+tan^2x=\dfrac{1}{cos^2x}\Leftrightarrow1+3^2=\dfrac{1}{cos^2x}\Leftrightarrow cosx=-\dfrac{\sqrt{10}}{10}\)
\(sinx=tanx.cosx=-\dfrac{3\sqrt{10}}{10}\)
\(sin2x=2sinxcosx=2.\left(-\dfrac{3\sqrt{10}}{10}\right).\left(-\dfrac{\sqrt{10}}{10}\right)=\dfrac{3}{5}\)
\(tan2x=\dfrac{2tanx}{1-tan^2x}=\dfrac{2.3}{1-3^2}=-\dfrac{3}{4}\)
\(cos4x=8cos^4x-8cos^2x+1=8.\left(-\dfrac{\sqrt{10}}{10}\right)^4-8.\left(-\dfrac{\sqrt{10}}{10}\right)^2+1=\dfrac{7}{25}\)
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x\)
\(=sin^2x.\left(\frac{1}{cos^2x}-1\right)=sin^2x.\frac{sin^2x}{cos^2x}=tan^2x.sin^2x\)