tìm số tự nhiên n sao cho:
\(n+3⋮n+1\)
\(^{n^2+3n+4⋮n+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để n+3 chia hết n+1 \(\Rightarrow\) n+3-(n+1)\(⋮\) n+1
\(\Rightarrow\)n+3-n-1\(⋮\)n+1
\(\Rightarrow\) 2\(⋮\)n+1
\(\Rightarrow\)n+1\(\in\){2;1}
lập bảng
n+1 | 1 | 2 |
n | 0 | 1 |
Vậy n\(\in\){0;1} thì n+3\(⋮\)n+1
Ta có n+3=(n+1) +2\(\Rightarrow\)n+3\(⋮\)n+1 khi n+1 la ước của 2
Ư(2) | -2 | -1 | 1 | 2 |
n | -3(loại) | -2(loại) | 0 | 1 |
Ta có n2+3n+4=n(n+3) +4 \(\Rightarrow\)n2+3n+4\(⋮\)n+3 khi n+3 thuộc ước của 4
Vậy n=1
Ta có:
n^2+3n+4=n(n+3)+4
Vì n(n+3) chia hết cho n+3 nên để n(n+3)+4 chia hết cho n+3 thì \(4⋮n+3\)
\(=>n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng:
n+3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Mà \(n\in N\)
=>n=1
Vậy n=1
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
\(n+3⋮n+1\)
\(\Leftrightarrow\)\(n+1+2⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Rightarrow\)\(2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Vậy \(n\in\left\{-3;-2;0;1\right\}\)