Bài 1 Cho tam giác ABC có AB = AC Gọi M là trung điểm của BC chứng minh rằng AM là tia phân giác của góc BAC
Bài 2 Cho tam giác ABC đường cao AH trên mặt phẳng bờ AB không chứa điểm b Vẽ tam giác acd sao cho AD = BC CD = AB Chứng minh rằng
A)AB//CD
B) AH vuông góc với AD
Bài 1:
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của \(\widehat{BAC}\)
Bài 2:
a: Xét ΔDAC và ΔBCA có
DA=BC
AC chung
DC=BA
Do đó: ΔDAC=ΔBCA
=>\(\widehat{DCA}=\widehat{BAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: ΔDAC=ΔBCA
=>\(\widehat{DAC}=\widehat{BCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
AD//BC
AH\(\perp\)BC
Do đó: AD\(\perp\)AH