K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(A=\sqrt{14-\sqrt{160}}-\sqrt{19+6\sqrt{90}}\)

\(A=\sqrt{14-4\sqrt{10}}-\sqrt{19+18\sqrt{10}}\)

\(A=\sqrt{\left(\sqrt{10}\right)^2-2.2\sqrt{10}+4}-\sqrt{\left(\sqrt{10}\right)^2+2.9\sqrt{10}+9}\)

\(A=\sqrt{10}-2-\sqrt{\left(\sqrt{10}\right)^2+2.9\sqrt{10}+9}\)

          Kiểm tra lại cái thứ 2

a: \(P=-5\sqrt{\dfrac{160}{90}}=-5\cdot\dfrac{4}{3}=-\dfrac{20}{3}\)

b: \(Q=\sqrt{a}-\sqrt{b}+2\sqrt{b}=\sqrt{a}+\sqrt{b}\)

a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)

Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

7 tháng 7 2016

bạn kiểm tra lại biểu thức A đi bạn

 

17 tháng 10 2021

1d 2a 3c 4b 5a

26 tháng 6 2016

a/ Ta có: \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(3+\sqrt{5}\right)^2}\)

    \(=3-\sqrt{5}+3+\sqrt{5}=6\)

b/ \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

     \(=\sqrt{5}-2-\sqrt{5}-2=-4\)

\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

Khi x=căn 2 thì \(A=\dfrac{\sqrt{2}+16}{\sqrt{\sqrt{2}}+3}\)