Tìm x
A) l x l +3 =1
B) l x+3 l +2=2
C) l x l -1 =3
D) l 5-x l=2
Giúp em vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left|2-3x\right|=-1\) (vô lí vì \(\left|2-3x\right|\ge0\) )
b)
`3x-2,42+0,8=3,38-0,2x`
`<=>3x+0,2x=3,38+2,42-0,8`
`<=>3,2x=5`
`<=>x=25/16`
c)
\(\dfrac{3}{x-1}+\dfrac{2}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\left(x\ne1\right)\)
\(< =>\dfrac{3}{x-1}+\dfrac{2}{x^2+x+1}=\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(< =>\dfrac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
suy ra
`3x^2 +3x+3+2x-2=3x^2`
`<=>3x^2 -3x^2 +3x+2x=-3+2`
`<=>5x=-1`
`<=>x=-1/5(tmđk)`
1.a) ĐK : \(3-2x\ge0\forall x\Rightarrow x\le\frac{3}{2}\)
Khi đó : \(\left|\frac{1}{2}x\right|=3-2x\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{3}{2}x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\left(tm\right)\)
Vậy \(x\in\left\{\frac{6}{5};2\right\}\)
b) ĐK : \(3x+2\ge0\Rightarrow x\ge\frac{-2}{3}\)
Khi đó : \(\left|x-1\right|=3x+2\Leftrightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1,5\\x=-0,25\left(tm\right)\end{cases}}\)
Vậy x = -0,25
c) ĐKXĐ : \(x-12\ge0\Rightarrow x\ge12\)
Khi đó |5x| = x - 12
<=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\left(\text{loại}\right)\)
Vậy \(x\in\varnothing\)
d) ĐK : \(5x+1\ge0\Rightarrow x\ge-\frac{1}{5}\)
Khi đó \(\left|17-x\right|=5x+1\Leftrightarrow\orbr{\begin{cases}17-x=5x+1\\17-x=-5x-1\end{cases}}\Rightarrow\orbr{\begin{cases}6x=16\\-4x=18\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(tm\right)\\x=-4,5\left(\text{loại}\right)\end{cases}}\)
Vậy x = 8/3
Tóm lại : Cách làm là
|f(x)| = g(x)
ĐK : g(x) \(\ge0\)
=> \(\orbr{\begin{cases}f\left(x\right)=-g\left(x\right)\\f\left(x\right)=g\left(x\right)\end{cases}}\)
Bạn tự làm tiếp đi ak
Ta có :
\(\left|x-3\right|=\left|7\right|\)
\(\Rightarrow\left|x-3\right|=7\)
\(\Rightarrow x-3=\hept{\begin{cases}7\\-7\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}10\\-4\end{cases}}\)
\(1)|5-2x|=|x+4|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=x+4\\5-2x=-x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x-x=4-5\\-2x+x=-4-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}-3x=-1\\-x=-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=9\end{cases}}}\)
Vậy \(x=\frac{1}{3};x=9\)
\(2)|x-1|=|2x+5|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x+5\\x-1=-2x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=5+1\\x+2x=-5+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=4\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=-\frac{4}{3}\end{cases}}}\)
Vậy \(x=-4;x=-\frac{4}{3}\)
\(3)|x+1|+|x+2|+|x+3|=0\left(1\right)\)
Ta có: \(|x+1|\ge0\forall x;|x+2|\ge0\forall x;|x+3|\ge0\forall x\)
\(\Leftrightarrow|x+1|+|x+2|+|x+3|\ge0\forall x\)
\(\left(1\right)\Leftrightarrow|x+1|+|x+2|+|x+3|=0\)
\(\Leftrightarrow\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=0\)
\(\Leftrightarrow x+1+x+2+x+3=0\)
\(\Leftrightarrow\left(x+x+x\right)+\left(1+2+3\right)=0\)
\(\Leftrightarrow3x+6=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-6:3\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
/x-3/ -(-3)=4
=>/x-3/ +3=4
=>/x-3/=1
=>x-3=1 hoặc x-3=-1
=>x=4 hoặc x=2
Vậy x=4 hoặc x=2
Các câu khác làm tương tự
a) |x| + 3= 1
|x|= 1-3
|x|= -2
x ∈ ∅
b) |x + 3| +2=2
|x+3|= 2-2
|x+3|=0
x+3=0
x= -3
c)|x| - 1= 3
|x|= 3+1
|x|=4
x= 4 hoặc -4
d) |5 - x|= 2
5-x=2 hoặc 5-x= -2
-x= 2-5 hoặc -x=-2-5
-x=-3 hoặc -x= -7
x= 3 hoặc x=7