K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

a)Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{4-x}=b\end{cases}\left(a,b>0\right)}\) thì ta có;

\(a-b+ab+3=0\)

\(\Leftrightarrow a-b+ab-1=-4\)

\(\Leftrightarrow b\left(a-1\right)+\left(a-1\right)=-4\)

\(\Leftrightarrow\left(b+1\right)\left(a-1\right)=-4\)

Xét Ư(-4) giải pt ta có \(\hept{\begin{cases}a=-3\\b=0\end{cases}};\hept{\begin{cases}a=-1\\b=1\end{cases}};\hept{\begin{cases}a=0\\b=3\end{cases}};\hept{\begin{cases}a=2\\b=-5\end{cases}};\hept{\begin{cases}a=3\\b=-3\end{cases}}\)

Dễ thấy các nghiệm thu được chẳng có cái nào cả \(a,b>0\) nên ta có VÔ NGHIỆm

b)\(5\sqrt{x^3+1}=2\left(x^2+2\right)\)

ĐK; \(x\ge-1\)

\(pt\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)

\(\Leftrightarrow-4x^4+25x^3-16x^2+9=0\)

\(\Leftrightarrow-\left(x^2-5x-3\right)\left(4x^2-5x+3\right)=0\)

Dễ thấy: \(4x^2-5x+3=0\) thì 

\(\Leftrightarrow4\left(x-\frac{5}{8}\right)^2+\frac{23}{16}>0\forall x\) ( vô nghiệm)

Nên \(x^2-5x-3=0\Leftrightarrow x=\frac{5\pm\sqrt{37}}{2}\) (thỏa)

P/s: lấy số điện thoại ở đây ko tiện, nếu muốn cảm ơn hoặc ko hiểu chỗ nào thì ib nhé

13 tháng 7 2018

Thắng Nguyễn làm sai rồi. đây là giải phương trình chứ có phải là phương trình nghiệm nguyên đâu nên ko thể xét ước đc

4 tháng 8 2017

Điều kiện : \(x\in R\)

\(x^2-3x+\frac{7}{2}=\sqrt{\left(x^2-2x+2\right)\left(x^2+4x+4\right)}\)

\(\Leftrightarrow\left(x^2-3x+\frac{7}{2}\right)^2=\left(x^2-2x+2\right)\left(x^2+4x+4\right)\)

\(\Leftrightarrow x^4+9x^2+\frac{49}{4}-6x^3+7x^2-21x=x^4+4x^3+4x^2-2x^3-8x^2-8x+2x^2+8x+8\)

\(\Leftrightarrow-6x^3+16x^2-21x+\frac{49}{4}=2x^3-2x^2+8\)

\(\Leftrightarrow-8x^3+18x^2-21x+\frac{17}{4}=0\)

\(\Leftrightarrow-8x^3+2x^2+16x^2-4x-17x+\frac{17}{4}=0\)

\(\Leftrightarrow-2x^2\left(4x-1\right)+4x\left(4x-1\right)-17\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(2x^2-4x+17\right)=0\)

\(\Leftrightarrow4x-1=0\Leftrightarrow x=\frac{1}{4}\)    (nhận)          ( 2x2 - 4x + 17 >= 0 với mọi x thuộc R)

2: =>2x^2-8x+4=x^2-4x+4 và x>=2

=>x^2-4x=0 và x>=2

=>x=4

3: \(\sqrt{x^2+x-12}=8-x\)

=>x<=8 và x^2+x-12=x^2-16x+64

=>x<=8 và x-12=-16x+64

=>17x=76 và x<=8

=>x=76/17

4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)

=>x^2-3x-2=x-3 và x>=3

=>x^2-4x+1=0 và x>=3

=>\(x=2+\sqrt{3}\)

6:

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)

=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)

=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)

=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)

=>-2*căn x-1=2

=>căn x-1=-1(loại)

=>PTVN

29 tháng 7 2023

1) ĐK: \(x\ge\dfrac{5}{2}\)

pt <=> \(x-4=\sqrt{2x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=7

2) ĐK: \(2x^2-8x+4\ge0\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=4

3) ĐK: \(x\ge3\)

pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\) 

Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)

19 tháng 9 2023

hết cứu đi mà làm