K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

Đặt \(k=\frac{x}{3}=\frac{y}{7}\)

Suy ra : \(k^2=\frac{x}{3}.\frac{y}{7}=\frac{xy}{21}=\frac{84}{21}=4\)

=> k = -2;2

+ k = -2 thì \(\frac{x}{3}=-2\Rightarrow x=-6\)

                  \(\frac{x}{7}=-2\Rightarrow x=-14\)

+ k = 2 thì : \(\frac{x}{3}=2\Rightarrow x=6\)

                    \(\frac{x}{7}=2\Rightarrow x=14\)

Vậy .............................

5 tháng 8 2017

Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)

\(x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với \(k=2\Rightarrow x=3.2=6;y=7.2=14\)

Với \(k=-2\Rightarrow x=3.\left(-2\right)=-6;y=7.\left(-2\right)=-14\)

Vậy ....

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)

Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

20 tháng 6 2016

v~ tuần này ko giải nữa

20 tháng 6 2016

biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau

12 tháng 7 2016

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

12 tháng 7 2016

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

6 tháng 8 2017

Sửa đề \(\frac{x}{3}=\frac{y}{4}\)\(\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=372\)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\) (1)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=6\)

Do đó : 

\(\frac{x}{15}=6\Rightarrow x=6.15=90\)

\(\frac{y}{20}=6\Rightarrow y=6.20=120\)

\(\frac{z}{28}=6\Rightarrow z=6.28=168\)

6 tháng 8 2017

Ta có:

\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) và \(2x+3y-z=372\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2.15+3.20-28}=\frac{372}{62}=6\)

\(\hept{\begin{cases}\frac{x}{15}=6\Rightarrow x=6.15=90\\\frac{y}{20}=6\Rightarrow y=6.20=120\\\frac{z}{28}=6\Rightarrow z=6.28=168\end{cases}}\)

Vậy \(x=90;y=120;z=168\)

6 tháng 11 2016

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)\(x.y=48\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\Leftrightarrow\frac{x^2}{3}=\frac{x.y}{4}=\frac{z.x}{7}\)

\(\frac{x^2}{3}=\frac{48}{4}=\frac{z.x}{7}\Leftrightarrow\frac{x^2}{3}=\frac{x.y}{4}=\frac{z.x}{7}=12\)

\(x=\sqrt{12.3}=6\)

\(y=\frac{12.4}{6}=8\)

\(z=\frac{12.7}{6}=14\)

Vậy: \(\hept{\begin{cases}x=6\\y=8\\z=14\end{cases}}\)

6 tháng 11 2016

xét x/3 = y/4

theo dãy tỉ số = nhau ta đc

x/3 = y/4 = xy/3.4 = xy/12 = 48/12 =  4

x=12

y=16

z=28

mik nha chế

24 tháng 12 2016

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+7}{7}=\frac{y-2}{9}=\frac{x+7-y+2}{7-9}=\frac{x-y+7+2}{-2}=\frac{3+9}{-2}=\frac{12}{-2}=-6\)

+) \(\frac{x+7}{7}=-6\Rightarrow x=-49\)

+) \(\frac{y-2}{9}=-6\Rightarrow y=-52\)

Vậy cặp số \(\left(x;y\right)\)\(\left(-49;-52\right)\)

2 tháng 6 2015

1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)

\(\Rightarrow7x+28=28+4y\)

\(\Rightarrow7x=4y\)

\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)

x/4 = 2  => x = 4 x 2 = 8

y/7 = 2   => y = 2 x 7 = 14 

30 tháng 7 2017

Đáp án của mik là:14