Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
Lời giải:
Đặt $6a+4=2^m, a+2=2^n$ với $m,n$ là số tự nhiên, $m>n$
$\Rightarrow 6.2^n-2^m=8$
$2^{n+1}(3-2^{m-n-1})=8$
$2^n(3-2^{m-n-1})=4$
$\Rightarrow 2^n$ là ước của 4.
$\Rightarrow n=0,1,2$
Nếu $n=0$ thì: $3-2^{m-1}=4\Rightarrow 2^{m-1}=-1$ (loại)
Nếu $n=1$ thì: $a+2=2^1=2\Rightarrow a=0$ (loại do $a$ nguyên dương)
Nếu $n=2$ thì $a+2=2^2=4\Rightarrow a=2$ (tm)
C3:
Gọi UCLN(12n + 1 ; 30n + 2) là d
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5(12n + 1) \(⋮\)d \(\Rightarrow\)60n + 5 \(⋮\)d
30n + 2 \(⋮\)d \(\Rightarrow\)2(30n + 2) \(⋮\)d \(\Rightarrow\)60n + 4 \(⋮\)d
\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d
\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d \(\subset\){ 1 ; -1 }
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1
Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
\(a,a^{\dfrac{1}{3}}\cdot\sqrt{a}=a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}=a^{\dfrac{5}{6}}\\ b,b^{\dfrac{1}{2}}\cdot b^{\dfrac{1}{3}}\cdot\sqrt[6]{b}=b^{\dfrac{1}{2}}\cdot b^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{6}}=b^1\)
\(c,a^{\dfrac{4}{3}}:\sqrt[3]{a}=a^{\dfrac{4}{3}}:a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}-\dfrac{1}{3}}=a\\ d,\sqrt[3]{b}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}-\dfrac{1}{6}}=b^{\dfrac{1}{6}}=\sqrt[6]{b}\)