K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
13 tháng 5 2021

ĐK: \(x\ne0\).

\(x^2+\frac{1}{x^2}+x+\frac{1}{x}=\frac{27}{4}\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2+x+\frac{1}{x}=\frac{27}{4}\)

\(\Leftrightarrow t^2+t-\frac{35}{4}=0\)(với \(t=x+\frac{1}{x}\))

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{5}{2}\\t=-\frac{7}{2}\end{cases}}\)

Với \(t=\frac{5}{2}\)

\(x+\frac{1}{x}=\frac{5}{2}\Leftrightarrow x^2-\frac{5}{2}x+1=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\).

Với \(t=-\frac{7}{2}\)

\(x+\frac{1}{x}=\frac{-7}{2}\Leftrightarrow x^2+\frac{7}{2}x+1=0\Leftrightarrow x=\frac{-7\pm\sqrt{33}}{4}\)

11 tháng 11 2018

pt <=> \(2x^2-20x+54-2\sqrt{x-4}-2\sqrt{6-x}=0\)

<=> \(\left(2x^2-20x+50\right)+\left(x-4-2\sqrt{x-4}+1\right)+\left(6-x-2\sqrt{6-x}+1\right)=0\)

<=> \(2\left(x-5\right)^2+\left(\sqrt{x-4}-1\right)^2+\left(\sqrt{6-x}-1\right)^2=0\)

<=> x = 5

14 tháng 5 2021

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

14 tháng 5 2021

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)

16 tháng 3 2017

x2 - 5x + 4 + x2 - 5x + 6 = 2

<=> 2x2 - 10x + 8 = 0

<=> x2 - 5x + 4 = 0

<=> x = 1 hoặc x = 4

16 tháng 3 2017

X^2-4x-x+4+x^2-2x-3x+6=2                                                                                                                                                               rút gọn và chuyển vế  : 2x^2-10x+8=0                                                                                                                                                bấm máy tính ; x=4 và x=1        

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

14 tháng 2 2018

a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)

Với a = 4

Thay vào phương trình (t) ta được:

  \(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)

\(\Leftrightarrow2x^2=2x^2-8\)

\(\Leftrightarrow0x=-8\)

Vậy phương trình vô nghiệm

b) Nếu x = -1

\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)

\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)

\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)

\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)

\(\Leftrightarrow-a^2+2a=-2-1+3\)

\(\Leftrightarrow a\left(2-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

Vậy a = {0;2}

NĂM MỚI VUI VẺ

14 tháng 2 2018

\(a,\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)

\(\frac{x+2+2}{x+2}+\frac{x-4+2}{x-4}=2\)

=> \(1+\frac{2}{x+2}+1+\frac{2}{x-4}=2\)

=>\(2\left(\frac{x-4+x+2}{\left(x+2\right)\left(x-4\right)}\right)=0\)

=> x=1 (t/m \(x\ne-2\) và \(x\ne4\))

14 tháng 2 2018

Đề sai thì phải, bạn thêm dấu ngoặc vào đi. Như vậy dễ làm hơn.


 

14 tháng 2 2018

khong sai de'

18 tháng 3 2020

- Ta có: \(\left(x^2-1\right).\left(x+2\right).\left(x-3\right)=\left(x-1\right).\left(x^2-4\right).\left(x+5\right)\)

      \(\Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x+2\right).\left(x-3\right)=\left(x-1\right).\left(x-2\right).\left(x+2\right).\left(x+5\right)\)

      \(\Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x+2\right).\left(x-3\right)-\left(x-1\right).\left(x-2\right).\left(x+2\right).\left(x+5\right)=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left[\left(x+1\right).\left(x-3\right)-\left(x-2\right).\left(x+5\right)\right]=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left[\left(x^2-2x-3\right)-\left(x^2+3x-10\right)\right]=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left(x^2-2x-3-x^2-3x+10\right)=0\)

      \(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left(-5x+7\right)=0\)

\(x-1=0\)\(\Leftrightarrow\)\(x=1\left(TM\right)\)

\(x+2=0\)\(\Leftrightarrow\)\(x=-2\left(TM\right)\)

\(-5x+7=0\)\(\Leftrightarrow\)\(-5x=-7\)\(\Leftrightarrow\)\(x=\frac{7}{5}\left(TM\right)\)

Vậy \(S=\left\{-2,1,\frac{7}{5}\right\}\)

19 tháng 2 2021

\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)

Vậy pt vô nghiệm

 

\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)