Chứng minh sin2009x + cosx <\(\frac{5}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{1+sinx-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{\left(1+sinx\right)-\left(1+sinx\right)\left(1-sinx\right)}{cosx\left(1+sinx\right)}\)
\(=\dfrac{\left(1+sinx\right)\left(1-1+sinx\right)}{\left(1+sinx\right)\cdot cosx}=\dfrac{sinx}{cosx}=tanx\)
=>ĐPCM
\(sin3x-cos3x=\left(3sinx-4sin^3x\right)-\left(4cos^3x-3cosx\right)\)
\(=3\left(sinx+cosx\right)-4\left(sin^3x+cos^3x\right)\)
\(=2\left(sin^3x+cos^3x\right)-6\left(sin^3x+cos^3x\right)+3\left(sinx+cosx\right)\)
\(=2\left(sin^3x+cos^3x\right)-6\left(sinx+cosx\right)\left(1-sinx.cosx\right)+3\left(sinx+cosx\right)\)
\(=2\left(sin^3x+cos^3x\right)-3\left(sinx+cosx\right)\left(1-2sinx.cosx\right)\)
\(=2\left(sin^3x+cos^3x\right)+6sinx.cosx\left(sinx+cosx\right)-3\left(sinx+cosx\right)\)
\(=2\left(sinx+cosx\right)^3-3\left(sinx+cosx\right)\) (đpcm)
\(1+sinx+cosx+tanx=1+cosx+sinx+\frac{sinx}{cosx}\)
\(=1+cosx+\frac{sinx\left(1+cosx\right)}{cosx}=\left(1+cosx\right)\left(1+\frac{sinx}{cosx}\right)\)
\(=\left(1+cosx\right)\left(1+tanx\right)\)
\(\frac{sinx+\left(cosx-1\right)}{1-cosx}=\frac{2cosx}{sinx-\left(cosx-1\right)}\Rightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)
\(\Rightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\Rightarrow sin^2x+cos^2x-1=0\)
=>1-1=0 luôn đúng =>dpcm
\(\dfrac{2}{sinx}-\dfrac{sinx}{1+cosx}\)
\(=\dfrac{2+2cosx-sin^2x}{sinx\left(1+cosx\right)}=\dfrac{2\left(1+cosx\right)-\left(1-cos^2x\right)}{sinx\left(1+cosx\right)}\)
\(=\dfrac{\left(1+cosx\right)\left(2-1+cosx\right)}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx}\)
\(\dfrac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=\dfrac{1+cosx+2cos^2x-1+4cos^3x-3cosx}{2cos^2x+cosx-1}\)
\(=\dfrac{4cos^3x+2cos^2x-2cosx}{2cos^2x+cosx-1}=\dfrac{2cosx\left(2cos^2x+cosx-1\right)}{2cos^2x+cosx-1}=2cosx\)
Lời giải:
Ta có:
VT\(=\frac{1+\cot ^2x}{1-\cot ^2x}+\frac{\cos x}{\cos x-\sin x}=\frac{1+\left(\frac{\cos x}{\sin x}\right)^2}{1-\left(\frac{\cos x}{\sin x}\right)^2}+\frac{\cos x}{\cos x-\sin x}\)
\(=\frac{\sin ^2x+\cos ^2x}{\sin ^2x(1-\frac{\cos ^2x}{\sin ^2x})}+\frac{\cos x(\cos x+\sin x)}{\cos ^2x-\sin ^2x}\)
\(=\frac{1}{\sin ^2x-\cos ^2x}-\frac{\cos x(\cos x+\sin x)}{\sin ^2x-\cos ^2x}\)
\(=\frac{1-\cos ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}=\frac{\sin ^2x-\cos x\sin x}{\sin ^2x-\cos ^2x}\)
\(=\frac{\sin x(\sin x-\cos x)}{\sin ^2x-\cos ^2x}=\frac{\sin x}{\sin x+\cos x}\)
Ta có đpcm.
a, Ta có: 1 - cos x sin x = sin x 1 + cos x <=> 1 - cos x 1 + cos x = sin 2 x <=> sin 2 + cos 2 = 1 (luôn đúng)
Từ đó ta có điều phải chứng minh
b, Ta có VT = sin 2 x + 1 + cos x 2 sin x ( 1 + cos x ) = 2 + 2 cos x sin x ( 1 + cos x ) = VT => DPCM
không có đáp án