K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

Vì $ABCD$ là hình bình hành nên $AB\parallel CD$

$\Rightarrow AE\parallel CF(1)$

Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$

$\Rightarrow AE=CF(2)$

Từ $(1); (2)$ xét tứ giác $AECF$ có 2 cạnh đối $AE, CF$ song song và bằng nhau nên $AECF$ là hình bình hành.

a: Gọi O là giao của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AECG có

AE//CG

AE=CG

Do đó: AECG là hình bình hành

=>AG//CE và AG=CE

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AF//CH và AF=CH

Xét ΔANB có

E là trung điểm của AB

EM//AN

Do đó: M là trung điểm của BN

=>BM=MN

Xét ΔDMC có

G là trung điểm của DC

GN//MC

Do đó: N là trung điểm của DM

=>DN=MN=MB=1/3DB

DN=1/3DB

DO=1/2DB

Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)

Xét ΔADC có

DO là trung tuyến

DN=2/3DO

Do đó: N là trọng tâm

=>A,N,G thẳng hàng và C,N,H thẳng hàng

Xét ΔABC có

BO là trung tuyến

BM=2/3BO

Do đó: M là trọng tâm

=>A,M,F thẳng hàng và C,M,E thẳng hàng

Xét ΔEBM và ΔGDN có

EB=GD

\(\widehat{EBM}=\widehat{GDN}\)

BM=DN

Do đó: ΔEBM=ΔGDN

=>EM=GN

Xét tứ giác EMGN có

EM//GN

EM=GN

Do đó: EMGN là hình bình hành

b: Để EMGN là hình chữ nhật thì EG=NM

=>\(AD=\dfrac{BD}{3}\)

13 tháng 10 2021

AD=a

a: Xét tứ giác AECF có

O là trung điểm chung của AC và EF

nên AECF là hình bình hành

b: Xét tứ giácc AGCK có

AG//CK

AK//CG

=>AGCK là hình bình hành

=>AK=CG

16 tháng 12 2020

A B C D E F K

d) Kẻ AK vuông góc với BC

Ta có: \(S_{ABC}=S_{ABE}+S_{AEC}=\frac{1}{2}AK.BE+\frac{1}{2}AK.EC=AK.BE\)(vì BE = EC (gt)) (1)

\(S_{AECF}=\frac{1}{2}AK.\left(AF+CE\right)=\frac{1}{2}AK.2.EC=AK.EC=AK.BE\)(vì AECF là hình bình hành => AF = EC) (2)

Từ (1) và (2) => \(S_{ABC}=S_{AECF}\)