cho đa thức f(x)=x^3+2x^2+ax+1
tìm a biết rằng đa thức f(x) có nghiệm =-2
NHANH NHANH GIÙM MK NHA!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
a) Thay x = 1 ta có :
F(1) = a.1^2 + b.1 + c = a + b + c = 0
Vậy x = 1 là nghiệm của f(x)
b) thay x = -1 ta có :
f(-1) = a. (-1)^2 + b.(-1) + c
= a - b + c = 0
VẬy x = -1 là nghiệm của f(x) nếu a - b + c = 0
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
Với x=-2=>f(x)=f(-2)=(-2)3+2*(-2)2+a*(-2)+1
=>-2=-8+2*4+a*(-2)+1
=>-2=2a+1
=>2a=-3 <=>x=-3/2
f(-2)=-23+2* (-2)2-a*2+1=0
-8+8-2a+1=0
1-2a=0
2a=1
a= \(\frac{1}{2}\)
Bạn thay x= -2 vào rồi tính thôi mà
Đa thức f(x) có nghiệm là -2 suy ra: \(\left(-2\right)^3+2.\left(-2\right)^2+\left(-2\right)a+1=0\)
\(\Rightarrow\left(-2\right)^3+2.2^2+\left(-2\right)a=0-1\)
\(\Rightarrow\left(-2\right)^3+2^3+\left(-2\right)a=-1\)
\(\Rightarrow\left(-2\right)a=-1\)
\(\Rightarrow a=\left(-1\right):\left(-2\right)=\frac{1}{2}\)
Vậy \(a=\frac{1}{2}\)