K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Biểu thức đã cho lớn nhất khi x + √x + 1 nhỏ nhất

ĐKXĐ: x ≥ 0

⇒ x + √x + 1 ≥ 1

⇒ x + √x + 1 nhỏ nhất là 1 khi x = 0

Vậy giá trị lớn nhất của biểu thức đã cho là 5/1 = 5 khi x = 0

13 tháng 11 2023

Biểu thức đã cho lớn nhất khi x + √x + 1 nhỏ nhất

ĐKXĐ: x ≥ 0

⇒ x + √x + 1 ≥ 1

⇒ x + √x + 1 nhỏ nhất là 1 khi x = 0

Vậy giá trị lớn nhất của biểu thức đã cho là 5/1 = 5 khi x = 0

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Bạn kiểm tra lại xem đã viết đúng đề chưa vậy?

a: |2x-3|=1

=>2x-3=1 hoặc 2x-3=-1

=>x=1(nhận) hoặc x=2(loại)

KHi x=1 thì \(A=\dfrac{1+1^2}{2-1}=2\)

b: ĐKXĐ: x<>-1; x<>2

\(B=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x-2\right)\left(x+1\right)}=\dfrac{-x+2}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{x+1}\)

27 tháng 8 2023

cop mạng thì k bh dc tick đâu =)

27 tháng 1 2022

a, Thay x = 1/4 vào A ta được : 

\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-3}=\dfrac{\dfrac{3}{2}}{-\dfrac{5}{2}}=-\dfrac{3}{5}\)

b, Với x >= 0 ; x khác 1 ; 9 

\(B=\dfrac{x+5-3\left(\sqrt{x}+1\right)+\sqrt{x}-1}{x-1}=\dfrac{x-2\sqrt{x}+1}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Hai biểu thức này chỉ có min thui bạn nhé.

1.

\(N=\frac{2x+5}{\sqrt{x}+1}=\frac{2\sqrt{x}(\sqrt{x}+1)-2(\sqrt{x}+1)+7}{\sqrt{x}+1}=2\sqrt{x}-2+\frac{7}{\sqrt{x}+1}\)

\(=2(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}-4\)

\(=\frac{7}{16}(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}+\frac{25}{16}(\sqrt{x}+1)-4\)

\(\geq 2\sqrt{\frac{7}{16}.7}+\frac{25}{16}(\sqrt{9}+1)-4=\frac{23}{4}\) (theo BĐT AM-GM)

Vậy $N_{\min}=\frac{23}{4}$ khi $x=9$

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

\(F=\frac{x+3}{\sqrt{x}+1}=\frac{\sqrt{x}(\sqrt{x}+1)-(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}-1+\frac{4}{\sqrt{x}+1}\)

\(=\frac{4}{9}(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}+\frac{5\sqrt{x}}{9}-\frac{13}{9}\)

\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{4}}{9}-\frac{13}{9}=\frac{7}{3}\)

Vậy $F_{\min}=\frac{7}{3}$ khi $x=4$

 

 

12 tháng 8 2021

1 quy đồng lên ra được

\(A=\dfrac{1}{x-2\sqrt{x-5}+3}\le\dfrac{1}{5-2.0+3}=\dfrac{1}{8}\)

dấu"=" xảy ra<=>x=5

12 tháng 8 2021

ở câu 1 mình làm cách quy đồng rồi nhưng nó ko ra, bạn có cách khác ko?

 

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:

$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$

$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$

Vậy $M=\frac{1}{4}$

------------------

$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$

Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$

$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$

Vậy $N=\frac{5}{2}$

$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$

Đáp án C.

31 tháng 12 2015

1/  196

2/  5/4

3/  1/3