K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Đề không đúng bạn nhé.

10 tháng 11 2023

Đặt: \(A=1+3+3^2+3^3+...+3^{1991}\)

\(3A=3+3^2+3^3+...+3^{1992}\)

\(3A-A=3+3^2+3^3+...+3^{1992}-1-3-3^2-...-3^{1991}\)

\(2A=3^{1992}-1\)

\(A=\dfrac{3^{1992}-1}{2}\)

10 tháng 11 2023

ỦA SAO SAI SAI

 

Ta có: B= 3 + 3
3 + 3
5 + ... + 3
1991= ﴾3 + 3
3 + 3
5
﴿ + ﴾3
7+ 3
9 + 3
11
﴿ + ... + ﴾3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4
﴿ + 3
7 x ﴾1 + 3
2 + 3
4
﴿ + ... + 3
1987 x ﴾1 + 3
2 + 3
4
﴿.
= 3 x 91 + 3
7 x 91 + ... + 3
1987 x 91= 3 x 7 x 13 + 3
7 x 7 x 13 + ... + 3
1987 x 7 x 13.
= 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿.
Vì B = 13 x ﴾ 3 x 7 + 3
7 x 7 + ... + 3
1987 x 7﴿ nên B chia hết cho 13.
B= ﴾3 + 3
3 + 3
5 + 3
7
﴿ + ... + ﴾3
1985 + 3
1987 + 3
1989 + 3
1991
﴿.
= 3 x ﴾1 + 3
2 + 3
4 + 3
6
﴿ + ... + 3
1985 x ﴾1 + 3
2 + 3
4 + 3
6
﴿.
= 3 x 820 + ... + 3
1985 x 820= 3 x 20 x 41 + ... + 3
1985 x 20 x 41.
= 41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿
Vì B =41 x ﴾ 3 x 20 + .. + 3
1985 x 20﴿ nên B chia hết cho 41.

TK NHA

Ta có: B= 3 + 3 3 + 3 5 + ... + 3 1991= ﴾3 + 3 3 + 3 5 ﴿ + ﴾3 7+ 3 9 + 3 11 ﴿ + ... + ﴾3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 ﴿ + 3 7 x ﴾1 + 3 2 + 3 4 ﴿ + ... + 3 1987 x ﴾1 + 3 2 + 3 4 ﴿. = 3 x 91 + 3 7 x 91 + ... + 3 1987 x 91= 3 x 7 x 13 + 3 7 x 7 x 13 + ... + 3 1987 x 7 x 13. = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿. Vì B = 13 x ﴾ 3 x 7 + 3 7 x 7 + ... + 3 1987 x 7﴿ nên B chia hết cho 13.

B= ﴾3 + 3 3 + 3 5 + 3 7 ﴿ + ... + ﴾3 1985 + 3 1987 + 3 1989 + 3 1991 ﴿. = 3 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿ + ... + 3 1985 x ﴾1 + 3 2 + 3 4 + 3 6 ﴿. = 3 x 820 + ... + 3 1985 x 820= 3 x 20 x 41 + ... + 3 1985 x 20 x 41. = 41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ Vì B =41 x ﴾ 3 x 20 + .. + 3 1985 x 20﴿ nên B chia hết cho 41. 

10 tháng 12 2020

a, Chứng minh rằng A chia hết cho 3 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )

A  = 2(1+2 ) + 23(1+2) +,...+  259(1+2)

A = 2.3 + 23.3 +  ....+259.3 

A = 3(2+23+....+259 ) \(⋮3\) 

=> đpcm 

chứng minh ằng A chia hết cho 7 

A = 2+22 + 23 + .....+ 260

A = ( 2+22 + 23 ) + (2+ 25 + 26) + .... + (258+259+260)

A = 2(1+2 +22 ) +2(1+2 +22 ) + .... +258(1+2 +22 )

A = 2.7 +24.7  + ....+258.7 

A= 7(2+24 ....+258 )\(⋮7\)

=> đpcm

Chứng minh A chia hết cho 15 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2 + 22 + 23 +24 ) +....+  (257 + 258 + 259 + 260 ) 

A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)

A = 2.15 + ....+ 257.15

A = 15.(2+...+257\(⋮15\) 

=> đpcm  

b,

chứng minh chia hết cho 13

 B= 3 + 33 + 35 + +  ..........+ 31991 

B = (3+33 + 35 ) + (37  + 39 +311 ) + ......+ (31987 + 31989 + 31991 ) 

B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )

B = 3.91 + 37.91 + ...+ 31987.91 

B = 91(3+37 + ... 31987 ) 

B = 7.13.(3+37 + ... 31987 )  \(⋮13\) 

=> đpcm 

chứng minh chia hết cho 41 

B = 3+33 + 35 + ...+ 31991

B = (3+33 + 3 + 37 ) + ...(31985 + 31987 + 31989 + 31991  ) 

B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)

B = 3. 820 + ...+ 31985.820

B = 820(3+...+31985)

B = 20.41 (3+...+31985\(⋮41\) 

=> đpcm

5 tháng 10 2017

help me !!!!!!!!!!!!!!!

5 tháng 10 2017

a) A= (2+22)+(23+24)+........(259+260)

= 1(2+22) + 22(2+22) + ....... 258(2+22)

= 1.6 + 22.6 +......... 258.6

=6(1+22+.......258)

Vì 6 chia hết cho 3 nên => 6(1+22+........258)

Các câu còn lại cũng tương tự như vậy nha bn!

30 tháng 7 2016

B=(3+3^5)+(3^2+3^6)+...+(3^1987+3^1991)

B=3*(1+3^4)+3^2*(1+3^4)+...+3^1987*(1+3^4)

B=3*82+3^2*82+...+3^1987*82

B=82*(3+3^2+...+3^1987)

B=41*2*(3+3^2+...+3^1987)

Nên B chia hết cho 41

15 tháng 12 2017

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

17 tháng 7 2016

A = 2 + 22 + ... + 260 chia hết cho 3 
=> ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 ) 
=> 2( 1 + 2 ) + 23( 1 + 2 ) + .... + 259( 1 + 2 ) 
=> 2 . 3 + 23 . 3 + .... + 259 . 3 
=> 3( 2 + ..... + 259 ) 
=> chia hết cho 3 
Những câu khác bạn làm tương tự nhé , tùy vào từng câu mà gộp nhiều hay ít thôi 
GOODLUCK !

17 tháng 7 2016

Tức là làm theo từng trường hợp á hả

3 tháng 10 2015

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

12 tháng 10 2022

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

B=1+3+\(3^2\)+\(3^3\)+....+\(3^{1991}\)

B=1+3+\(3^2\)+\(3^3\)+....+\(3^{1991}\)

=(1+3+\(3^2\)+\(3^3\))+(\(3^4\)+\(3^5\)+\(3^6\)+\(3^7\))+.....+(\(3^{1988}\)+\(3^{1989}\)+\(3^{1990}\)+\(3^{1991}\))

=(1+\(3^4\))(1+3+\(3^2\)+\(3^3\))(\(3^8\)+....+\(3^{1988}\))

=82.(1+3+\(3^2\)+\(3^3\))(\(3^8\)+....+\(3^{1988}\))

Vì 82⋮41

→E⋮41

→B⋮41(đpcm)

Bạn tham khảo nha: 

B=1+3+32+33+....+31991B=1+3+32+33+....+31991

=(1+3+32+33)+(34+35+36+37)+.....+(31988+31989+31990+31991)=(1+3+32+33)+(34+35+36+37)+.....+(31988+31989+31990+31991)

=(1+3+32+33)+34(1+3+32+33)+....+31988(1+3+32+33)=(1+3+32+33)+34(1+3+32+33)+....+31988(1+3+32+33)

=(1+3+32+33)+(1+34+....+31988)=(1+3+32+33)+(1+34+....+31988)

=(1+34)(1+3+32+33)(38+....+31988)=(1+34)(1+3+32+33)(38+....+31988)

=82.(1+3+32+33)(38+....+31988)=82.(1+3+32+33)(38+....+31988)

Vì 82⋮4182⋮41

→82.(1+3+32+33)(38+....+31988)⋮41→82.(1+3+32+33)(38+....+31988)⋮41

→B⋮41(đpcm)