K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Bình phương hai vế của BĐT ta được

\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge a+b\)

\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\)(Đúng với mọi a,b lớn hơn 0)

Vậy \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\)

4 tháng 8 2017

Bình phương 2 vế

\(a+b+2\sqrt{ab}\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\)  (luôn đúng)  

Đẳng thức xảy ra \(\Leftrightarrow\)  a = 0 hoặc b = 0

4 tháng 2 2021

Chỗ kia là có thêm dấu + nữa nha

13 tháng 7 2017

2, a, \(a+\dfrac{1}{a}\ge2\)

\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)

\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)

vậy...................

13 tháng 7 2017

Câu 1:

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}=3\)

\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

28 tháng 7 2017

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)

\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)

\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)

\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)

\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)

Xảy ra khi \(a=b=c=2\)

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

Lời giải:

CM $\sqrt{a}+\sqrt{b}> \sqrt{a+b}$

BĐT cần chứng minh tương đương với:

$(\sqrt{a}+\sqrt{b})^2> a+b$

$\Leftrightarrow a+b+2\sqrt{ab}> a+b$
$\Leftrightarrow \sqrt{ab}>0$ (luôn đúng với mọi $a>0, b>0$)

Ta có đpcm

--------------------

CM $|a|+|b|> |a+b|$. Cái này là = rồi chứ không phải > bạn nhé.

Khi $a>0; b>0$ thì $|a|=a; |b|=b\Rightarrow |a|+|b|=a+b$

$|a+b|=a+b$

$\Rightarrow |a|+|b|=|a+b|$

 

26 tháng 5 2018

Áp dụng bđt AM-GM: \(\dfrac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\dfrac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}\)

19 tháng 10 2021

a: \(=\dfrac{a+\sqrt{ab}-a+\sqrt{ab}-2b}{a-b}\)

\(=\dfrac{2\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a-b}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

22 tháng 11 2021

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)

Cần cm:

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\\ \Leftrightarrow a+b=a+b+2c+2\sqrt{\left(a+c\right)\left(b+c\right)}\\ \Leftrightarrow2c+2\sqrt{ab+ac+bc+c^2}=0\\ \Leftrightarrow2c+2\sqrt{c^2}=0\\ \Leftrightarrow2c+2\left|c\right|=0\\ \Leftrightarrow2c-2c=0\left(c< 0\right)\\ \Leftrightarrow0=0\left(luôn.đúng\right)\)

Vậy đẳng thức đc cm