K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Tê bệnh  Số lượng người mắc  Nguyên nhân  Cách phòng chống 
 Sỏi thận 100 người 

 - Do ăn uống không cân bằng. Ăn nhiều đồ mặn.

- Thường xuyên nhịn tiểu ít uống nước.

 - Điều chỉnh chế độ dinh dưỡng hợp lí.

 - Thường xuyên uống nhiều nước, đi tiểu khi buồn.

 Suy thận  124 người 

 - Tổn thương thận từ nhiễm trùng huyết.

 - Do bệnh đái tháo đường, tăng huyết áp kèm theo gây nên.

 - Cần ăn uống điều độ, hợp lí theo lời khuyên của bác sĩ.

 - Kết hợp chạy thận nhân tạo.

7 tháng 12 2021

Thi hả

7 tháng 12 2021

Thi thì tự làm nhé

5 tháng 3 2022

\(\left(x\ne3;x\ne\dfrac{1}{2}\right)\)\(\left\{{}\begin{matrix}\dfrac{2}{2x-1}\le\dfrac{1}{3-x}\\\left|x\right|< 1\Leftrightarrow-1< x< 1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(3-x\right)-2x+1}{\left(2x-1\right)\left(3-x\right)}\le0\left(1\right)\\-1< x< 1\end{matrix}\right.\)\(\)

\(\left(1\right)\Leftrightarrow\dfrac{-4x+7}{\left(2x-1\right)\left(3-x\right)}\le0\)\(\Leftrightarrow\dfrac{-4x+7}{-2x^2+7x-3}\le0\Leftrightarrow x\in\left(-\infty;\dfrac{1}{2}\right)\cup[\dfrac{7}{4};3)\)

\(kết\) \(hợp:-1< x< 1\)\(\Rightarrow x\in\left(-1;\dfrac{1}{2}\right)\cup[\dfrac{7}{4};3)\)

\(b,\)\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+35>0\)

\(\Leftrightarrow\left(x^2-9x+8\right)\left(x^2-9x+20\right)+35>0\)

\(đặt:x^2-9x+8=t\ge-\dfrac{49}{4}\)

\(bpt\Leftrightarrow t\left(t+12\right)+35>0\Leftrightarrow t^2+12t+35>0\Leftrightarrow\left[{}\begin{matrix}t< -7\\t>-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-9x+8< -7\\x^2-9x+8>-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{9-\sqrt{21}}{2}< x< \dfrac{9+\sqrt{21}}{2}\\x\in\left(-\infty;\dfrac{9-\sqrt{29}}{2}\right)\cup\left(\dfrac{9+\sqrt{29}}{2};+\infty\right)\end{matrix}\right.\)

\(c;\)\(\left(x^2+x+4\right)^2+2.4x\left(x^2+x+4\right)+16x^2-x^2>0\)

\(\Leftrightarrow\left(x^2+x+4+4x\right)^2-x^2>0\)

\(\Leftrightarrow\left(x+2\right)^2\left(x^2+6x+4\right)>0\)

\(\Leftrightarrow x^2+6x+4>0\Leftrightarrow....\)

ý d; giống ý b

\(e;bpt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8>0\)

\(\Leftrightarrow\left(x^2+6x-16\right)\left(x^2+6x-7\right)+8>0\)

\(đặt:x^2+6x-7=t\ge-16\Rightarrow t\left(t-9\right)+8>0\)

(làm giống ý b)

\(f;x^4-2x^3+x-2>0\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+1\right)>0\left(do:x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right)\)

\(\Rightarrow bpt\Leftrightarrow\left(x+1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)

\(g;h\) dùng bảng phá giá trị tuyệt đối để làm

 

 

 

 

 

NV
19 tháng 11 2021

\(\Delta'=\left(m-1\right)^2-\left(m^2+2\right)=-2m-1\ge0\Rightarrow m\le-\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{2}=m\\x_1x_2-2=m^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{x_1+x_2+2}{x}\right)^2=m^2\\x_1x_2-2=m^2\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{x_1+x_2+2}{2}\right)^2=x_1x_2-2\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

b.

\(A=\sqrt{2\left(x_1+x_2\right)^2-4x_1x_2+16}-3x_1x_2\)

\(=\sqrt{8\left(m-1\right)^2-4\left(m^2+2\right)+16}-3\left(m^2+2\right)\)

\(=\sqrt{4m^2-16m+16}-3\left(m^2+2\right)\)

\(=\sqrt{\left(4-2m\right)^2}-3m^2-6\)

\(=\left|4-2m\right|-3m^2-6\)

\(=4-2m-3m^2-6\) (do \(m\le-\dfrac{1}{2}\Rightarrow4-2m>0\))

\(=-3m^2-2m-2\)

\(=-\dfrac{1}{4}\left(12m^2+8m+1\right)-\dfrac{7}{4}\)

\(=-\dfrac{1}{4}\left(6m+1\right)\left(2m+1\right)-\dfrac{7}{4}\le-\dfrac{7}{4}\)

\(A_{max}=-\dfrac{7}{4}\) khi \(m=-\dfrac{1}{2}\)

NV
26 tháng 3 2022

16.

Hệ tọa độ giao điểm: \(\left\{{}\begin{matrix}2+t=2+3t'\\-t=3-2t'\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t=-9\\t'=-3\end{matrix}\right.\)

Thay \(t=-9\) vào pt d ta được: \(\left\{{}\begin{matrix}a=-7\\b=9\end{matrix}\right.\)

\(\Rightarrow a+b=2\)

17.

Do d qua M nên: \(\dfrac{-3}{a}+\dfrac{3}{2b}=1\) (1)

d cắt tia đối Ox tại A \(\Rightarrow a< 0\) và \(OA=-a\)

d cắt Oy tại b \(\Rightarrow b>0\) và \(OB=b\)

\(OA=2OB\Rightarrow-a=2b\)

Thế vào (1): \(\dfrac{-3}{a}+\dfrac{3}{-a}=1\Rightarrow a=-6\Rightarrow b=\dfrac{-a}{2}=3\)

\(\Rightarrow ab=-18\)

NV
26 tháng 3 2022

18.

Gọi A là giao điểm của d với Ox

\(\Rightarrow y_A=0\Rightarrow\dfrac{x_A-1}{2}=\dfrac{0+1}{-4}\Rightarrow x_A=\dfrac{1}{2}\)

\(\Rightarrow OA=\left|x_A\right|=\dfrac{1}{2}\)

Gọi B là giao điểm của d với Oy

\(\Rightarrow x_B=0\Rightarrow\dfrac{0-1}{2}=\dfrac{y_B+1}{-4}\Rightarrow y_B=1\)

\(\Rightarrow OB=\left|y_B\right|=1\)

\(S=\dfrac{1}{2}OA.OB=\dfrac{1}{4}\)