K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Xét tam giác vuông ABE và tam giác vuông KBE có

Cạnh BE chung

DBA=DBK hay EBA=EBA ( vì BD là phân giác của góc ABC)

=>\(\Delta ABE=\Delta KBE\) ( cạnh góc vuông- góc nhọn)

=>BA=BK

Vậy tam giác ABK cân tại B

b) Xét \(\Delta ABD\) và \(\Delta KBD\) có

AB=BK

ABD=KBD

Cạnh BD chung

=> \(\Delta ABD=\Delta KBD\left(c.g.c\right)\)

=> DKB=DAB=90 độ

Vậy \(DK⊥BC\)

c)d)

Xét \(\Delta ABI\) và \(\Delta KBI\) có

BA=BK

ABI=FBI

Cạnh BF chung

=> \(\Delta ABI=\Delta KBI\left(c.g.c\right)\)

=> IA=IK

Ta có DA=DK, IA=IK hay ID là đường trung trực của AK

=>AE=EK

Có \(DK⊥BC,AH⊥BC\)  => DK//AH

=>DKE=EAI( 2 góc so le trong)

Xét tam giác vuông DKE và tam giác vuông EAI có

AE=EK

DKE=EAI

=> \(\Delta DKE=\Delta EAI\)(cạnh góc vuông- góc nhọn)

=>DK=AI

Mà DK=DA

=>AI=AD

Xét tam giác vuông DAE và tam giác vuông IAE có

DA=DI

Cạnh AE chung

=> \(\Delta DAE=\Delta IAE\)( cạnh huyền- cạnh góc vuông)

=>DAE=EAI hay góc CAK= góc KAH

Vậy AK là phân giác của HAC

Xét tam giác vuông IKE và tam giác vuông EAD có

AE=EK

KEI=AED( 2 góc đối đỉnh)

=>\(\Delta IKE=\Delta EAD\)( cạnh góc vuông- góc nhọn)

=>IKE=EAD

Mà IKE và EAD là 2 góc so le trong =>IK//AC

8 tháng 5 2016

Hình thì bạn tự vẽ nha =))) Mik xin lỗi 

a) Chứng Minh AB=BK 

Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có : 

B1 = B2 ( vì BD là tia p/giác của BAC )

BE là cạnh huyền chung 

=) tam giác ABE =  tam giác BEK ( ch - gn )

=) AB = AK ( 2 cạnh tương ứng ) 

b) Chứnh minh DK vuông góc với BC

Xét tam giác ABD và Xét tam giác KBD có :

AB = BK (cm ở câu a ) 

B1 = B2 vì ( BD là tia p/giác của BAC )

BD là cạnh chung 

=) tam giác ABD =  tam giác KBD ( cgc )

=) góc BKD = góc BAD ( 2 góc tương ứng )

mà góc BAD = 90o

=) góc KBD = 90o

=) DK vuông góc vs BC

c) CM IK // AC

23 tháng 5 2016

a) Chứng Minh AB=BK 

Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có : 

B1 = B2 ( vì BD là tia p/giác của BAC )

BE là cạnh huyền chung 

=) tam giác ABE =  tam giác BEK ( ch - gn )

=) AB = AK ( 2 cạnh tương ứng ) 

b) Chứnh minh DK vuông góc với BC

Xét tam giác ABD và Xét tam giác KBD có :

AB = BK (cm ở câu a ) 

B1 = B2 vì ( BD là tia p/giác của BAC )

BD là cạnh chung 

=) tam giác ABD =  tam giác KBD ( cgc )

=) góc BKD = góc BAD ( 2 góc tương ứng )

mà góc BAD = 90o

=) góc KBD = 90o

=) DK vuông góc vs BC

c) CM IK // AC

1 tháng 5 2018

không giúp dc dù làm dc!

1 tháng 5 2018

a​) xét ABE vuông tại E và KBE vuông tại E​

​có góc ABE =KBE(gt)​

BE chug​

​=> ABE=KBE ( ch -gn)​

​=> AB=KB( cạnh t/ư)

​=> ABK cân tại B

b) xét ABD và KBD

có AB=KB​

​ ABD=KBD

​BD chung

=> ABD = KBD( cgc)​

=> BAD = BKD​

​mà BAD = 90 độ

​=> BKD =90 độ

​hay DK vuông góc BC tại K

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.a)     Chứng minh tam giác ABK cân tại Bb)    Chứng minh DK vuông góc BCc)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HACd)    Gọi I là giao điểm của AH và BD. Chứng minh IK//ACBài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).a)     So sánh góc ABC và góc ACB. Tính góc ABH.b)    Vẽ AD là phân...
Đọc tiếp

Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Chứng minh tam giác ABK cân tại B

b)    Chứng minh DK vuông góc BC

c)     Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC

d)    Gọi I là giao điểm của AH và BD. Chứng minh IK//AC

Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).

a)     So sánh góc ABC và góc ACB. Tính góc ABH.

b)    Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA

c)     Tia BI cắt AC ở E. Chứng minh tam giác ABE đều

Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.

a)     Biết AC =8cm, AB=6cm. Tính BC?

b)    Tam giác ABK là tam giác gì?

c)     Chứng minh DK vuông góc BC

d)    Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.

Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm

a)     Tam giác ABC là tam giác gì

b)    Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE

c)     Chứng minh AE vuông góc BD

d)    Kéo dài BA cắt ED tại F. Chứng minh AE//FC

Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.

a)     Chứng minh tam giác ABH=tam giácACH

b)    Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC

c)     Cho AB=30cm, BH=18cm.Tính AH ,AG

d)    Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .

Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm

a)Tính BC

b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM

c)Kẻ HI vuông góc BC tại I .So sánh HI và MK

d) So sánh BH+ BK với BC

 

1
17 tháng 3 2019

Ngắn nhở -.-

18 tháng 6 2021

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)

\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK

Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)

Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp

\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)

\(\Rightarrow\)\(AI\parallel KD\)

Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)

BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)

\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành

mà \(IA=IK\Rightarrow IKDA\) là hình thoiundefined

a: Xét ΔBAK có

BE là đường cao

BE là đường trung tuyến

Do đó: ΔBAK cân tại B

b: Xét ΔBAD và ΔBKD có

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)