K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

8 tháng 8 2017

Đáp án C

Phương trình 

sin x − 1 cos 2 x − cos x + m = 0 ⇔ sin x = 1 m = cos x − cos 2 x ⇔ x = π 2 + k 2 π             1 m = cos x − cos 2 x     2

Vì x ∈ 0 ; 2 π nên

0 ≤ π 2 + k 2 π ≤ 2 π ⇔ − 1 4 ≤ k ≤ 3 4 ⇒ k = 0 ⇒ x = π 2

Để phương trình đã cho có 5 nghiệm thuộc đoạn 0 ; 2 π ⇔ 2  có 4 nghiệm phân biệt thuộc  0 ; 2 π

Đặt t = cos x ∈ − 1 ; 1 , khi đó 2 ⇔ t 2 − t + m = 0  có 2 nghiệm phân biệt t 1 , t 2  thỏa mãn  − 1 < t 1 ; t 2 < 1

⇔ t 1 + 1 t 2 + 1 > 0 t 1 − 1 t 2 − 1 > 0 Δ = − 1 2 − 4 m > 0 ⇔ t 1 t 2 + t 1 + t 2 + 1 > 0 t 1 t 2 − t 1 + t 2 + 1 > 0 − 4 m − 1 < 0 ⇔ 0 < m < 1 4

Vậy  m ∈ 0 ; 1 4

27 tháng 9 2017

Đáp án C

  sin x − 1 cos 2 x − cos x + m = 0 ⇔ sin x = 1   1 cos 2 x − cos x + m = 0 2              

Trong 0 ; 2 π  thì phương trình (1) chỉ có 1 nghiệm x = π 2   nên để phương trình ban đầu có 4 nghiệm thì phương trình 2 phải có 4 nghiệm phân biệt tức là phương trình t 2 − t + m = 0 *  phải có 2  nghiệm trong khoảng  − 1 ; 1  và khác 0

(*) ⇔ m = t − t 2 . Lập bảng biến thiên của vế trái.

 

Vậy điều kiện của m là m ∈ 0 ; 1 4 .

9 tháng 4 2018

loading...  loading...  loading...  

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)