K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
1. 

Xét tứ giác $HNMK$ có $\widehat{HNK}=\widehat{HMK}=90^0$. Mà 2 góc này cùng nhìn cạnh $HK$ nên $HNMK$ là tứ giác nội tiếp.

$\Rightarrow H,N,M,K$ cùng thuộc 1 đường tròn.

2.

Xét tứ giác $INPM$ có tổng 2 góc đối nhau $\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0$ nên $INPM$ là tứ giác nội tiếp.

$\Rightarrow I,N, P,M$ cùng thuộc 1 đường tròn.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Hình vẽ:

1: Xét tứ giác HNMK có

\(\widehat{HNK}=\widehat{HMK}=90^0\)

=>HNMK là tứ giác nội tiếp đường tròn đường kính HK

=>H,N,M,K cùng thuộc 1 đường tròn

2: Xét tứ giác INPM có

\(\widehat{INP}+\widehat{IMP}=90^0+90^0=180^0\)

=>INPM là tứ giác nội tiếp

=>I,N,P,M cùng thuộc 1 đường tròn

25 tháng 10 2023

Xét tứ giác BNMC có

\(\widehat{BNC}=\widehat{BMC}=90^0\)

=>BNMC là tứ giác nội tiếp đường tròn đường kính BC

=>BNMC nội tiếp (I)

Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp đường tròn đường kính AH

=>AMHN nội tiếp (K)

Gọi giao điểm của AH với BC là E

Xét ΔABC có

CN,BM là đường cao

CN cắt BM tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại E

\(\widehat{KNH}+\widehat{INH}=\widehat{KNI}\)

\(\Leftrightarrow\widehat{KNI}=\widehat{KHN}+\widehat{NCB}\)

\(=\widehat{EHC}+\widehat{ECH}=90^0\)

\(\widehat{KMI}=\widehat{KMB}+\widehat{IMB}\)

\(=\widehat{KHM}+\widehat{MBC}\)

\(=\widehat{MBC}+\widehat{MCB}=90^0\)

Xét tứ giác KNIM có

\(\widehat{KNI}+\widehat{KMI}=180^0\)

=>KNIM nội tiếp

a: Xét tứ giác ENMF có 

\(\widehat{ENF}=\widehat{EMF}\left(=90^0\right)\)

Do đó: ENMF là tứ giác nội tiếp

b: Xét tứ giác DNIM có 

\(\widehat{DNI}+\widehat{DMI}=180^0\)

Do đó: DNIM là tứ giác nội tiếp

8 tháng 9 2021

E F D M N I

a, Xét ΔENF vuông tại N

⇒ EF là đường kính của đường tròn có tâm là trung điểm của EF

 Xét ΔEMF vuông tại M

⇒ EF là đường kính của đường tròn có tâm là trung điểm của EF

 ⇒ M,N,E,F cùng thuộc 1 đường tròn đường kính EF

b,Tương tự

a: Xét tứ giác ENMF có 

\(\widehat{ENF}=\widehat{EMF}=90^0\)

Do đó: ENMF là tứ giác nội tiếp

hay E,N,M,F cùng thuộc 1 đường tròn

b: Xét tứ giác DMIN có 

\(\widehat{DNI}+\widehat{DMI}=180^0\)

Do đó: DMIN là tứ giác nội tiếp

hay D,M,I,N cùng thuộc 1 đường tròn

6 tháng 9 2021

có cách khác không ạ? ._.`

16 tháng 11 2021

b: Xét tứ giác ANHM có 

\(\widehat{ANH}+\widehat{AMH}=180^0\)

Do đó: ANHM là tứ giác nội tiếp

hay A,N,H,M cùng thuộc 1 đường tròn

Xét tứ giác DMIN có 

\(\widehat{DNI}+\widehat{DMI}=180^0\)

Do đó: DMIN là tứ giác nội tiếp

hay D,M,I,N cùng thuộc một đường tròn

9 tháng 9 2021

chị ơi , có cách nào khác ngoài cách sử dụng phương pháp tứ giác nội tiếp nữa không ạ? ;-;