K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
3 tháng 11 2023

A = (5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^2020+5^2021+5^2022)

= 5(1+5+5^2)+5^4(1+5+5^2)+...+5^2020(1+5+5^2)

= 5.31+5^4.31+...+5^2020.31

= 31(5+5^4+...+5^2020) chia hết cho 31

31 tháng 10 2023

sossososo

:)))

31 tháng 10 2023

Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)

\(B=5^{2022}\left(5^2+5+1\right)\)

\(B=31.5^{2022}⋮31\)

Vậy \(B⋮31\) (đpcm)

9 tháng 8 2023

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)

\(A=30+5\cdot30+...+5^{28}\cdot30\)

\(A=30\cdot\left(1+5+...+5^{28}\right)\)

Vậy A chia hết cho 30

9 tháng 8 2023

\(A=5+5^2+....+5^{30}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)

\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)

Vậy A chia hết cho 31

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

2 tháng 1 2019

Ta có: \(5+5^2+5^3+....+5^{12}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)

\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)

\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)

Ta lại có: \(5+5^2+5^3+......+5^{12}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+......+5^{10}.31\)

\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

10 tháng 11 2019

lời giải là ngáo ngơ lơ tơ mơ

17 tháng 12 2023

Số số hạng của A:

98 - 1 + 1 = 98 (số)

Do 98 ⋮ 2 nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (5 + 5²) + (5³ + 5⁴) + ... + (5⁹⁷ + 5⁹⁸)

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5⁹⁷.(1 + 5)

= 5.6 + 5³.6 + ... + 5⁹⁷.6

= 6.(5 + 5³ + ... + 5⁹⁷) ⋮ 6

Vậy A ⋮ 6

17 tháng 12 2023

A=(5+5^2)+(5^3+5^4)+...+(5^97+5^98)

A=5(1+5)+5^3(1+5)+...+5^97(1+5)

A=(5.6)+(5^3.6)+...+(5^97.6)

A=6.(5+5^3+...+5^97)

suy ra A⋮6

Suy ra A