cho tam giác ABC, đường cao AH. Ta dựng phía ngoài tam giác ABC là các tam giác vuông cân tại A là ABE và CAF. Từ E hạ EK vuông góc HA. a) Chứng minh EK=AH b) Chứng minh đường thẳng AH chứa trung tuyến của tam giác FAE. toán 8 mọi người giúp mình câu b với! cảm ơn mọi người rất nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hic em chào chị em mới lớp 5 em thật vô lễ qá xin lỗi chị
Bạn xem lời giải ở đây nhé
Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath
a) Ta chứng minh tam giác KAE = tam giác HBA
Hai tam giác trên là hai tam giác vuông, có hai cạnh huyền bằng nhau EA = BA (giả thiết). \(\widehat{EAK}=\widehat{HBA}\) (vì đều phụ với góc \(\widehat{BAH}\), góc \(\widehat{EAK}\) phụ với \(\widehat{BAH}\)vì tổng của chúng bằng 180 độ trừ đi góc vuông \(\widehat{EAB}\), còn góc \(\widehat{HBA}\)phụ với \(\widehat{BAH}\) vì là hai góc nhọn của tam giác vuông),
Hai tam giác vuông có hai góc đôi một bằng nhau thì cặp góc còn lại cũng bằng nhau.
Vậy tam giác KAE = tam giác HBA. Suy ra EK = AH.
Chứng minh tương tự: FN = AH
=> EK = FN (=AH)
b) Do EK và FN cùng vuông góc với AH nên EK // FN, mà EK = FN nên EKFN là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)
=> đường chéo EF cắt KN tại trung điểm I của EF.
Nếu tam giác AEF vuông tại A thì EF = 2 AI (với AI là đường trung tuyến) và ngược lại. Khi đó có 4 góc ở đỉnh A kề nhau mà 3 góc bằng 90 độ => Góc \(\widehat{BAC}=90^o\). Vậy Tam giác ABC là tam giác vuông.
Bạn tham khảo bài này nhé
Câu hỏi của be hat tieu - Toán lớp 7 - Học toán với OnlineMath