Tìm x:
a.(5+x)(x-5)-x(x+5)=10
b.x(2x+3)-2(x2+x)=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
a, <=>x2 +6x+9-4x-12=0
<=> x2 +2x -3=0
<=> x2 +3x -x-3=0
<=> x.(x+3) - (x+3) =0
<=> (x-1)(x+3)=0
<=> x=1 hoặc x=-3
b, <=> x(x2 -25) - (x-3)(x+3)2 -7=0
<=> x3 -25x + (9-x2) (x+3) -7=0
<=> x3 -25x+ 9x+27-x3 -3x2 -7=0
<=> -3x2 -16x +20=0
<=>(3x-10)(x-2) =0 (đoạn này tự phân tích nha ^ ^)
<=> x= 10/3 hoặc x=2
Chúc bạn học tốt nha!
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
\(a,\Rightarrow x^2+4x+25-x^2=3\\ \Rightarrow4x=-22\Rightarrow x=-\dfrac{11}{2}\\ b,\Rightarrow\left(2x-3-4x-3\right)\left(2x-3+4x+3\right)=0\\ \Rightarrow6x\left(-2x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)
a) \(A=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+5\right)\)
\(A=2x^2+x-x^3-2x^2+x^3-x+5\)
\(A=5\)
=> giá trị biểu thức ko phụ thuộc vào biến x
b) \(A=x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
=> \(A=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
=> \(A=\)16
vậy giá trị của biểu thức A ko phụ thuộc vào biến x
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
a) (5 + x)(x - 5) - x(x + 5) = 10
x² - 25 - x² - 5x = 10
-5x = 10 + 25
-5x = 35
x = 35 : (-5)
x = -7
b) x.(2x + 3) - 2(x² + x) = 2
2x² + 3x - 2x² - 2x = 2
x = 2
a: \(\left(x+5\right)\left(x-5\right)-x\left(x+5\right)=10\)
=>\(x^2-25-x^2-5x=10\)
=>-5x-25=10
=>-5x=35
=>x=-7
b: \(x\left(2x+3\right)-2\left(x^2+x\right)=2\)
=>\(2x^2+3x-2x^2-2x=2\)
=>x=2