K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

A(BT)=1/9((9/x+y+1) +(9/y+z+1)+9/(z+x+1)<=1/9(1/x+1/y+1+1/y+1/z+1+1/z+1/x+1)=1/9(2/x+2/y+2/z+3)

=1/9(2.(xy+yz+zx)/xyz)+3=2/9(xy+yz+zx)+1/3<=2/9.3+1/3=1(đpcm)

31 tháng 7 2017

Another way :|

Đặt \(\hept{\begin{cases}a=\sqrt[3]{x}\\b=\sqrt[3]{y}\\c=\sqrt[3]{z}\end{cases}}\Rightarrow\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\)và \(xyz=1\Rightarrow\left(abc\right)^3=1\Rightarrow abc=1\)

Áp dụng BĐT AM-GM ta có:\(a^3+b^3+1=a^3+b^3+abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+abc\)

\(\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\). Tương tự cũng có:

\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

Xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)

29 tháng 3 2017

đặt x=a3,y=b3,z=c3 => (abc)3=xyz=1=>abc=1, bdt được viết lại dưới dạng : sigma 1/a3+b3+1 </ 1

đến đây dùng bổ đề a3+b3 >/ ab(a+b) 

17 tháng 1 2021

Lần sau bạn chú ý dùng chức năng Gõ công thức trực quan để người đọc dễ hiểu để bài nhé. Không hiểu không ai giúp bạn đâu.

Câu hỏi đã được hỏi nhiều lần, có thể xem tại: Cho x,y,z >0 t/m x y z=xyz. C/m \(\dfrac{1 \sqrt{1 x^2}}{x} \dfrac{1 \sqrt{1 y^2}}{y} \dfrac{1 \sqrt{1 z^2}}{z}\le xyz\) - Hoc24

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

NV
5 tháng 1 2021

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{1}{xy\left(x+y\right)+xyz}+\dfrac{1}{yz\left(y+z\right)+xyz}+\dfrac{1}{zx\left(z+x\right)+xyz}\)

\(\Rightarrow VT\le\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=\dfrac{1}{x+y+z}.\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

7 tháng 1 2021

Cho e xin cách khác nữa đc ko ạ