K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

a.

$3x(x-1)-3x^2=-6$

$\Leftrightarrow 3x^2-3x-3x^2=-6$

$\Leftrightarrow -3x=-6$

$\Leftrightarrow x=2$

b.

$(x-7)(x+3)-(x-1)(x+4)=-3$

$\Leftrightarrow (x^2-4x-21)-(x^2+3x-4)=-3$

$\Leftrightarrow -7x-17=-3$

$\Leftrightarrow -7x=17-3=14$

$\Leftrightarrow x=14:(-7)=-2$

27 tháng 6 2021

Với \(n\in N;n>0\) có:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Áp dụng vào P có:
\(P=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2016}}-\dfrac{1}{\sqrt{2017}}\)

\(=1-\dfrac{1}{\sqrt{2017}}\)

\(\Rightarrow a^2+b=1^2+2017=2018\)

Ý A

11 tháng 3 2022

\(\Delta'=4-\left(m-1\right)=5-m\)

để pt có nghiệm kép khi \(5-m=0\Leftrightarrow m=5\)

chọn B 

NV
11 tháng 3 2022

Phương trình có nghiệm kép khi:

\(\Delta'=4-\left(m-1\right)=0\Leftrightarrow5-m=0\)

\(\Rightarrow m=5\)

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

16 tháng 4 2020

| x + 3 | - 6x + 1 = | x + 1 | 

<=> | x + 3 | - | x + 1 | - 6x + 1 = 0 

Phương trình này em xét dấu và kẻ bảng  rồi chia trường hợp:

3 tháng 12 2016

có ai k giúp mình với

3 tháng 12 2016

mk gips nhưng bn cho mk trước đi

cái này nhóm bn lm thí nghiệm phân công nnao thì bn phải bt chứ :))

Chọn D

13 tháng 2 2023

Chọn B

15 tháng 3 2023

a. \(C=\dfrac{n+1}{n-2}\) \(\left(n\ne2\right)\)

\(C=\dfrac{n-2+3}{n-2}=\dfrac{n-2}{n-2}+\dfrac{3}{n-2}=1+\dfrac{3}{n-2}\)

Để C nguyên thì \(\dfrac{3}{n-2}\in Z\) \(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

`@n-2=1->n=3(n)`

`@n-2=-1->n=1(n)`

`@n-2=3->n=5(n)`

`@n-2=-3->n=-1(n)`

Vậy \(n\in\left\{3;1;5;-1\right\}\) thì C nguyên

b.\(D=\dfrac{2n+1}{5n-3}\left(n\ne\dfrac{3}{5}\right)\)

Ta có: \(2n+1⋮5n-3\)

\(\Leftrightarrow5.\left(2n+1\right)⋮\left(5n-3\right)\)

\(\Leftrightarrow10n+5⋮5n-3\)

\(\Leftrightarrow2\left(5n-3\right)+11⋮\left(5n-3\right)\)

Vì \(2\left(5n-3\right)⋮\left(5n-3\right)\) nên để D nguyên thì  \(11⋮\left(5n-3\right)\) 

hay \(5n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

`@5n-3=1->n=14/5(l)`

`@5n-3=-1->n=2/5(l)`

`@5n-3=11->n=14/5(l)`

`@5n-3=-11->n=-8/5(l)`

Vậy không có giá trị \(n\in Z\) thỏa mãn