cho tam giác abc có c= 30 độ đường cao ah =1/2 bc d là trung điểm ab tính góc bcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ ABC có :
AH là đường cao đồng thời là trung tuyến
=> ∆ABC cân tại A
b) Vẽ E là trung điểm Kẻ CE
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Vì D là trung điểm AB
=> AD = DB
Vì E là trung điểm AC
=> AE = EC
=> AE = EC = AD = DB
Xét ∆ EBC và ∆ DCB ta có :
BC chung
CE = BD ( cmt)
ACB = ABC ( cmt)
=> ∆EBC = ∆DCB (c.g.c)
=> DCB = EBC ( tg ứng)
Mà ABC = ACB
=> ACD = ABE
Vì D là trung điểm AB
=> CD là trung tuyến AB
=> CD là phân giác ACB
Vì E là trung điểm AC
=> BE là trung tuyến AB
=> BE là phân giác ABC
=> DCB = ACD
=> ABE = EBC
=> DCB = 180° - \(\frac{1}{2}\)ACB - \(\frac{1}{2}\)ABC
Mà ACB = ABC = 30°
=> DCB = 180° - \(\frac{60°}{4}\)= 15°
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)