Tìm x:
a. 2x ( x - 2) - x + 2 = 0
b. 1 - 8x3 = 6x - 12x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x^2-3\right)^2=0\\ \Leftrightarrow x^2-3=0\\ \Leftrightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\\ b,\Leftrightarrow8x^3+12x^2+6x+1-64=0\\ \Leftrightarrow\left(2x+1\right)^3-4^3=0\\ \Leftrightarrow\left(2x+1-4\right)\left[\left(2x+1\right)^2+4\left(2x+1\right)+16\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=3\\4x^2+4x+1+8x+4+16=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\4x^2+12x+17=0\left(1\right)\end{matrix}\right.\)
Xét \(\left(1\right)\Leftrightarrow\left(2x+3\right)^2+8=0\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
Vậy pt có nghiệm \(x=\dfrac{3}{2}\)
\(c,\Leftrightarrow\left(3-2x-5\right)\left(3-2x+5\right)=0\\ \Leftrightarrow\left(-2-2x\right)\left(8-2x\right)=0\\ \Leftrightarrow-2\left(x+1\right)\cdot2\left(4-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
a.
$x^4-6x^2+9=0$
$\Leftrightarrow (x^2-3)^2=0$
$\Leftrightarrow x^2-3=0$
$\Leftrightarrow x^2=3$
$\Leftrightarrow x=\pm \sqrt{3}$
b.
$8x^3+12x^2+6x-63=0$
$\Leftrightarrow (8x^2+12x^2+6x+1)-64=0$
$\Leftrightarrow (2x+1)^3=64=4^3$
$\Leftrightarrow 2x+1=4$
$\Leftrightarrow x=\frac{3}{2}$
c. $(3-2x)^2-25=0$
$\Leftrightarrow (3-2x)^2-5^2=0$
$\Leftrightarrow (3-2x-5)(3-2x+5)=0$
$\Leftrightarrow (-2-2x)(8-2x)=0$
$\Leftrightarrow -2-2x=0$ hoặc $8-2x=0$
$\Leftrightarrow x=-1$ hoặc $x=4$
d.
$6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1$
$\Leftrightarrow (x+1)^2[6-2(x+1)]+2(x^3-1)=1$
$\Leftrightarrow (x+1)^2(4-2x)+2x^3-3=0$
$\Leftrightarrow 6x+1=0$
$\Leftrightarrow x=\frac{-1}{6}$
e. $(x-2)^2-(x-2)(x+2)=0$
$\Leftrightarrow (x-2)[(x-2)-(x+2)]=0$
$\Leftrightarrow (x-2)(-4)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
f. $x^2-4x+4=25$
$\Leftrightarrow (x-2)^2=5^2=(-5)^2$
$\Leftrightarrow x-2=5$ hoặc $x-2=-5$
$\Leftrightarrow x=7$ hoặc $x=-3$
\(a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
a: Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)
\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)
\(\Leftrightarrow-13x=13\)
hay x=-1
c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)
\(\Leftrightarrow3x=12\)
hay x=4
a) 2x3-18x=0
⇔ 2x(x2-9)=0
⇔ 2x(x-3)(x+3)=0
⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b)(3x-1)(2x+1)-6x(x+2)=11
⇔ 6x2+x-1-6x2-12x=11
⇔ -11x=12
\(\Leftrightarrow x=-\dfrac{12}{11}\)
c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)
⇔ x3-3x2+3x-1-x3-8-3+3x2=0
⇔ 3x=12
⇔ x=4
a: Ta có: \(x^3+1=0\)
\(\Leftrightarrow x^3=-1\)
hay x=-1
b: Ta có: \(6x^2-12x-48=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
a) \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow35x=-35\Leftrightarrow x=-1\)
b) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a: Ta có: \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow x=1\)
b: Ta có: \(x^3-25x=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
Bài 1:
a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Bài 2:
a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)
\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
a. \(x^2-2x+2\left|x-1\right|-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2x+2\left(x-1\right)-7=0\\x^2-2x-2\left(x-1\right)-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\\x^2-4x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\\left(x-5\right)\left(x+1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm3\\x=5\\x=-1\end{matrix}\right.\)
b: Ta có: \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2+10\cdot\left(x^2+5x\right)=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
a, 2x(x-2)-x+2=0
<=>2x(x-2)-(x-2)=0
<=>(x-2)(2x-1)=0
=>x-2=0
hoặc 2x-1=0
=>x=2
hoặc x=1/2
b, 1-8x3=6x-12x2
<=>1-8x3-6x+12x2=0
<=>[13-(2x)3 ] -6x(1-2x)=0
<=>(1-2x)[1+2x+(2x)2 ]-6x(1-2x)=0
<=>(1-2x)[1+2x+(2x)2-6x]=0
<=>(1-2x)[12-2.1.2x+(2x)2 ]=0
<=>(1-2x)(1-2x)2=0
<=>(1-2x)3=0
=>1-2x=0
=>2x=1
=>x=1/2
Chúc bn học giỏi nhoa!!!
a)<=>2x(x-2)-(x-2)=0
<=>(2x-1)(x-2)=0
+) 2x-1=0
=>x=1/2
+)x-2=0
=>x=2
Vậy x=1/2 hoặc x=2
b) <=>1- (2x)3=6x(1-2x)
<=>(1-2x)(1+2x+4x2)=6x(1-2x)
<=>(1-2x)(1+2x+4x2)-6x(1-2x)=0
<=>(1-2x)(1+2x+4x2-6x)=0
<=>(1-2x)(1-4x+4x2)=0
<=>(1-2x)(1-2x)2=0
<=>(1-2x)3=0
<=> 1-2x=0
<=>x=1/2