K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

khi cả hai đều là số âm

27 tháng 10 2023

:))))))))))))))))))))))))))))))))))

5 tháng 9 2015

99=100

199=1100

vì 1=1

=>99=100

6 tháng 9 2015

tớ không biết

mà bài của cậu đâu phải của lớp 1

10 tháng 2 2019

Khi làm toán sai

10 tháng 2 2019

Khi cả 2 số là số âm

24 tháng 4 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(\frac{1}{2^2}>\frac{1}{2.3}\)

\(\frac{1}{3^2}>\frac{1}{3.4}\)

\(\frac{1}{4^2}>\frac{1}{4.5}\)

\(............\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow\)\(A>\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow\)\(A>\frac{99}{202}\) \(\left(1\right)\)

Lại có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\)\(A< 1-\frac{1}{100}\)

\(\Rightarrow\)\(A< \frac{99}{100}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{99}{202}< A< \frac{99}{100}\) ( đpcm ) 

Vậy \(\frac{99}{202}< A< \frac{99}{100}\)

Chúc bạn học tốt ~ 

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

nó tất nhiên là lớn hơn

nên chúng ta ko cần phải chứng minh

20 tháng 4 2019

thấy 1/2>1/100

1/3>1/100

/......

1/100=1/100

<=> 1/2+1/3+..+1/100>99/100

hok tốt

15 tháng 3 2017

sao lại đi chửi người ta thế @hoang vl

15 tháng 3 2017

may viet de ra kieu gi vay

25 tháng 1 2022

4/3 >3/4.    9/11 < 11/9.      100/99> 99/100

k mình nha