K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2023

Bạn cần trợ giúp bài nào thì nên ghi chú rõ bài đó ra nhé.

4 tháng 1 2022

Em chia nhỏ bài ra mỗi bài đăng 1 lượt hỏi nha!

Bài 6: 

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

=>AM⊥DE

2 tháng 9 2021

a. \(\sqrt{-2x+3}\)       

ĐKXĐ: x < 0

b. \(\sqrt{\dfrac{2}{x^2}}\)

ĐKXĐ: x \(\ne\) 0

c. \(\sqrt{\dfrac{4}{x+3}}\)

ĐKXĐ: x > -3

d. \(\sqrt{\dfrac{-5}{x^2+6}}\)

ĐKXĐ: x vô nghiệm 

 

2 tháng 9 2021

4. a. x2 - 7

= x2 - \(\left(\sqrt{7}\right)^2\)

\(\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)

b. x2 - \(2\sqrt{2}x\) + 2

= x2 - \(2\sqrt{2}x\) + \(\left(\sqrt{2}\right)^2\)

= (x - \(\sqrt{2}\))2

c. x2 + \(2\sqrt{13}x\) + 13

= x2 + \(2\sqrt{13}x\) + \(\left(\sqrt{13}\right)^2\)

\(\left(x+\sqrt{13}\right)^2\)

30 tháng 12 2021

Câu 51: A

a: n=4

b: n=2

9 tháng 11 2021

Cô ơi ghi các bước giải giúp con

15 tháng 2 2017

a=5 nha bạn k cho mình đi

24 tháng 6 2021

7 chia hết cho a + 2 

\(\Rightarrow a+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)   

a + 2 = - 7 

a = - 9 

a + 2 = - 1 

a = - 3 

a + 2 = 1 

a = - 1 

a + 2 = 7 

a = 5 

Vậy a cần tìm là - 9 ; - 3 ; - 1 ; 5 

3 tháng 12 2017

x + 3 + 9 chia hết x + 3

9 chia hết x + 3

x + 3 thuộc Ư ( 9 )

mà Ư (9) = ( 1,3,9 )

hay x + 3 thuộc ( 1,3,9 )

ta có bảng

x + 3                     1                     3                      9

x                           -2                    0                      6

ĐG                       Loại                 TM                   TM

Vậy x thuộc ( 0 , 6 )

5 tháng 4 2016

1 giờ 2 người làm đc là

1 : 6 = 1/6 công việc

1 giờ người 1 làm đc là

1 : 9 = 1/9 công việc

1 giờ người 2 làm đc là

1/6 - 1/9 = 1/18

người thứ 2 làm trong

1 : 1/18 = 18 giờ

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Bài 2:

a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4$ (cm)

Áp dụng định lý Pitago:

$BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{4^2-2,4^2}=3,2$ (cm)

b.

Áp dụng hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH=9.16$

$\Rightarrow AH=12$ (cm)

Áp dụng định lý Pitago:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+9^2}=15$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

$BC=BH+CH=9+16=25$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 8 2021

Bài 3:

Vì $AB:AC=3:4$ nên đặt $AB=3a; AC=4a$ (cm)

Áp dụng định lý Pitago:
$15=BC=\sqrt{AB^2+AC^2}=\sqrt{(3a)^2+(4a)^2}=5a$

$\Rightarrow a=3$ (cm)

$AH=\frac{AB.AC}{BC}=\frac{3a.4a}{5a}=2,4a$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{(3a)^2-(2,4a)^2}=1,8a=1,8.3=5,4$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{(4a)^2-(2,4a)^2}=3,2a=3,2.3=9,6$ (cm)

 

23 tháng 10 2021

b và c

23 tháng 10 2021

B và D