K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Câu hỏi của phantuananh - Toán lớp 9 - Học toán với OnlineMath

Chứng minh 1/a + 2/b >= 3/c. Giúp mình với !!! | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

Cho a,b là các số dương thỏa mãn a^2 +2b^2 <= 3c^2. Chứng minh 1/a + 2/b >= 3/c. GIÚP MÌNH VỚI.? | Yahoo Hỏi & Đáp

Nhiêu đó chắc đủ rồi

29 tháng 6 2015

Điều đó là đương nhiên mà. Giả sử x2 + y2 + z2 = 5 thì x2 + y2 + z\(\le\) 

29 tháng 6 2015

Áp dụng bất đẳng thức Bu.nhia.cop.xki cho 2 bộ 3 số: 

\(\left(a+2b+3c\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b+\sqrt{3}.\sqrt{3}c\right)^2\)

\(\le\left(1+2+3\right)\left(a^2+2b^2+3c^2\right)=6.6=36\)

\(\Rightarrow\left|a+2b+3c\right|\le6\)

\(\Rightarrow-6\le a+2b+3c\le6\)

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

6 tháng 2 2016

Vì \(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\Leftrightarrow a^2-3a-10\le0\Leftrightarrow a^2\le3a+10\)(1)

CMTT \(b^2\le3b+10\Rightarrow2b^2\le6b+20\left(2\right)\) ; \(c^2\le3c+10\Leftrightarrow3c^2\le9c+30\)(3)

        Từ (1) (2) và (3) => \(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\)

BĐT đc cm 

6 tháng 2 2016

xin lỗi mình mới học lớp  8

17 tháng 12 2017

đặt \(3^{13579}=m\).

Vì (3;13579)=1 nên (13579;m)=1 (*)

đem m+1 số \(13579;13579^2;...;13579^{m+1}\)chia cho m

Theo nguyên lý Dirichle  trong m+1 số trên có ít nhất 2 số khi chia cho m có cùng số dư

Gọi 2 số đó là \(13579^x\&13579^y\)(tự đk cho x;y)

giả sử x>y

=>13579^x-13579^y chia hết cho m

=>\(13579^y\left(13579^{x-y}-1\right)\)chia hết cho m

mà 13579^y không chia hết cho m nên 13579^x-y  -1 chia hết cho m

=>tồn tại n=x-y thỏa mãn đề bài

17 tháng 12 2017

tại sao 13579^y ko chia hết cho m