GIẢI PT : -2x^4 + 8x^3 - 3x^2 - 4x + 4 = 0
GIẢI CHI TIẾT GIÙM MIK VS NHA >.< THANKS NHÌU !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{8x-4x^2-5}\)
Xét mẫu: \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)
Vì \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)
Nên \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)
Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)là-2
\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)
Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Với 2x - 1 = 1 => 2x = 2 => x = 1
2x - 1 = -1 => 2x = 0 => x = 0
2x - 1 = 3 => 2x = 4 => x = 2
2x - 1 = -3 => 2x = -2 => x = -1
Vậy x = {1;0;2;-1}
\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)
Thấy \(x=0\) không phải là nghiệm của pt : Chia hai vế cho \(x^2\) ta được :
\(\Leftrightarrow x^2+3x+4+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)+4=0\)
\(Đặt\) : \(x+\dfrac{1}{x}\) \(=t\) , thay vào pt ta được :
\(\Leftrightarrow t^2-2+3t+4=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+2\right)=0\)
\(TH1:\) \(\Leftrightarrow x+\dfrac{1}{x}+1=0\)
\(\dfrac{x^2+1+x}{x}=0\)
hình như sai thì phải á bạn
\(TH2:\) \(x+\dfrac{1}{x}+2=0\)
\(x^2+2x+1=0\)
\(\Rightarrow x=-1\)
\(Vậy...\)
mong các anh chị lớp trên xem hộ em bài này với ạ chứ em cũng mới chỉ có lớp 8 thôi ạ
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
b) Ta có: \(9x^4+8x^2-1=0\)
\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)
\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)
mà \(x^2+1>0\forall x\)
nên \(9x^2-1=0\)
\(\Leftrightarrow9x^2=1\)
\(\Leftrightarrow x^2=\dfrac{1}{9}\)
hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)
Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)