K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

Sửa đề: AB=3cm; AC=4cm; BH=1,8cm

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\)

=>BC=3^2/1,8=5(cm)

ΔABC vuông tại A có AH là đường cao

nên CA^2=CH*CB

=>CH*5=4^2=16

=>CH=3,2(cm)

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>AH^2=3^2-1,8^2=5,76

=>AH=2,4(cm)

b: góc tạo bởi thang với tường là:

90-63=27 độ

Chiều cao của thang so với mặt đất là:

\(7\cdot sin27\simeq3,18\left(cm\right)\)

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

30 tháng 10 2019

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

10 tháng 10 2021

Ta có : HB + HC = BC = 8 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC=2.8\Rightarrow AB=4cm\)

* Áp dụng hệ thức : \(AC^2=CH.BC=6.8\Rightarrow AC=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)

17 tháng 11 2021

mà hệ thống tính điểm GP SP là ntn v bác?

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)

13 tháng 5 2021

b) ΔAHB vuông tại H

Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2

                                                         ⇒ 42 + 22 = AB2

                                                         ⇒AB2 = 20

                                                ⇒AB = √20

ΔAHC vuông tại H

Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2

                                                       ⇒4+82 = AC2

                                                         ⇒ AC= 80

                                                ⇒AC = √80

b)Vì AB>AC(√20>√80)

⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)

13 tháng 5 2021

Bạn tự vẽ hình nhé