K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Ta nhận thấy mẫu số của các phân số có qui luật 1x3; 2x4; 3x5; 4x6...... => mẫu số của phân số thứ 98 là 98x100

\(\Rightarrow A=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x\frac{36}{35}x...x\frac{9801}{9800}\)

\(A=\frac{2x2x3x3x4x4x5x5x6x6x...x99x99}{1x2x3x3x4x4x5x5x...x96x96x97x97x98x98x99x100}=\frac{2x99}{100}=\frac{99}{50}=1\frac{49}{50}\)

1\(\frac{49}{50}\)nha

_____________
______________
hok tốt

6 tháng 6 2017

Viết lại dãy số trên dười dạng :\(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};...\)

Khi đó, số hạng số 98 là  \(\frac{99^2}{98.100}\)

Ta có : A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{99^2}{98.100}\)

A = \(\frac{\left(2.3.4....99\right)^2}{\left(1.2.3....98\right).\left(3.4.5....100\right)}\)

A =\(\frac{99.2}{1.100}\)

A = \(\frac{99}{50}\)

 Vậy tích của 98 số dầu tiên của dãy số trên là \(\frac{99}{50}\)

12 tháng 1 2019

Ta có:

\(1\frac{1}{3}=\frac{4}{3}=\frac{2^2}{1.3}\)

\(1\frac{1}{8}=\frac{9}{8}=\frac{3^2}{2.4}\)

\(1\frac{1}{15}=\frac{16}{15}=\frac{4^2}{3.5}\)

=> Số thứ 98 của dãy là \(\frac{99^2}{98.100}\)

=> Tích của 98 số đầu tiên trong dãy đã cho là:

\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{99^2}{98.100}\)

\(=\frac{2.3.4.....99}{1.2.3.....98}.\frac{2.3.4.....99}{3.4.5.....100}\)

\(=\frac{99}{1}.\frac{2}{100}=\frac{99}{50}\)

18 tháng 7 2015

Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)

=> Số hạng  thứ 98 là : \(\frac{99^2}{98.100}\)

=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)

18 tháng 7 2015

Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)

=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)

Vậy ta cần tính tích:

A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)

   = \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)

   =\(\frac{99.2}{1.100}=\frac{99}{50}\)

15 tháng 7 2016

\(a.1\frac{1}{120}\)

nha bạn 

Nguyễn Anh Kim Hân
15 tháng 7 2016

\(a.1\frac{1}{120}\)

k mk nha Nguyễn Anh Kim Hân