cho hình hộp ABCD.A'B'C'D'. Gọi O, O' lần lượt là tâm của 2 đáy
a) chứng minh (AA'B'B) // (CC'D'D)
b) chứng minh (A'BD) // (CB'D')
c) chứng minh A'G' // (ABCD) với G' là trọng tâm tam giác A'B'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
B D = a ⇒ B O = a 2 ⇒ A O = a 2 - a 2 4 = a 3 2 ⇒ A C = a 3 A ' A , A B C D = A ' A , A ' B ' = A B ' A ' ⇒ A A ' = A ' B ' . tan 30 0 = a 3 3 ⇒ V = 1 3 a 3 3 1 2 a 3 . a = a 3 6
ĐÁP ÁN A
Ta có
S A B C D = a 2 sin 60 ° = a 2 3 2 A A ' = 30 ° = a 3 3
Thể tích khối hộp là V = A A ' . S A B C D = a 3 3 . a 2 3 2 = a 3 2
a: ABCD.A'B'C'D là hình hộp chữ nhật
=>AA'//DD'//BB'//CC'
AA'//CC'
=>AA'//(CC'D'D)
B'B//D'D
=>B'B//(CC'D'D)
mà AA'//(CC'D'D)
và A'A và B'B cùng thuộc mp(AA'B'B)
nên (AA'B'B)//(CC'D'D)
b: Xét tứ giác ADC'B' có
AD//B'C'
AD=B'C'
Do đó: ADC'B' là hình bình hành
=>AB'//DC'
=>AB'//(C'BD)(1)
Xét tứ giác BDD'B' có
BB'//DD'
BB'=D'D
Do đó: BDD'B' là hình bình hành
=>BD//B'D'
=>B'D'//(C'BD)(2)
Từ (1) và (2) suy ra (C'BD)//(AB'D')
c: Gọi G là trọng tâm của ΔABC
Xét ΔBAC có
BO là đường trung tuyến
G là trọng tâm
Do đó: B,O,G thẳng hàng và \(BG=\dfrac{2}{3}BO\)
Gọi M là giao điểm của AG với BC; M' là giao điểm của A'G' với B'C'
Xét ΔABC có
G là trọng tâm
M là giao điểm của AG với BC
Do đó: M là trung điểm của BC và \(AG=\dfrac{2}{3}AM\)
Xét ΔA'B'C' có
G' là trọng tâm
A'G' cắt B'C' tại M'
Do đó: M' là trung điểm của B'C'
Xét ΔABM và ΔA'B'M' có
AB=A'B'
\(\widehat{ABM}=\widehat{A'B'M'}\)
BM=B'M'
Do đó: ΔABM=ΔA'B'M'
=>AM=A'M'
Xét hình thang BCC'B' có
M,M' lần lượt là trung điểm của CB,C'B'
=>MM' là đường trung bình
=>MM'//BB'//CC'
=>MM'//AA'
Xét tứ giác AA'M'M có
MM'//AA'
AM=A'M'
Do đó: AA'M'M là hình bình hành
=>AM//A'M'
=>AG//A'G'
=>A'G'//(ABCD)