K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

\(\frac{3x-2}{2}\le\frac{x+1}{3}\)

\(\Leftrightarrow9x-6\le2x+2\Leftrightarrow7x\le8\Leftrightarrow x\le\frac{8}{7}\)

Vậy tập nghiệm của phương trình là S = { x | x =< 8/7 }

12 tháng 5 2021

\(\frac{x+1}{3}\ge\frac{3x-2}{2}\)

\(< =>\frac{2\left(x+1\right)}{6}\ge\frac{3\left(3x-2\right)}{6}\)

\(< =>2x+2\ge9x-6\)

\(< =>9x-6-2x-2\le0\)

\(< =>7x\le8< =>x\le\frac{8}{7}\)

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

31 tháng 8 2017

Lp 9 dễ z ák :)) <3

Ta có : \(\left(a-1\right)^2\ge0\Leftrightarrow a^2-2a+1\ge0\Leftrightarrow a^2+1\ge2a\Leftrightarrow\frac{a}{a^2+1}\le\frac{a}{2a}=\frac{1}{2}\)(1)

CM tương tự ta cx có : \(\hept{\begin{cases}\frac{b}{b^2+1}\le\frac{1}{2}\left(2\right)\\\frac{c}{c^2+1}\le\frac{1}{2}\left(3\right)\end{cases}}\)

Cộng vế với vế của (1);(2);(3) lại ta đc đpcm

4 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Thiếp lập 2 BĐT còn lại:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{a+b}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

29 tháng 7 2019

Mình giải thử thôi nha

\(\frac{\left(2x-1\right)^2}{2}-\frac{\left(1-3x\right)^2}{3}\le x\left(2-x\right)\)

\(\Leftrightarrow3\left(2x-1\right)^2-2\left(1-3x\right)^2\le6x\left(2-x\right)\)

\(\Leftrightarrow12x^2-12x+3-2+12x-18x^2\le12x-6x^2\)

\(\Leftrightarrow-6x^2+1\le12x-6x^2\)

\(\Leftrightarrow1\le12x\)

\(\Leftrightarrow\frac{1}{12}\le x\)

\(\Rightarrow x\ge\frac{1}{12}\)

NV
4 tháng 3 2020

a/

\(\frac{3x-4}{x-2}-1>0\Leftrightarrow\frac{2x-2}{x-2}>0\Rightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)

b/

\(\frac{2x-5}{2-x}+1\le0\Rightarrow\frac{x-3}{2-x}\le0\Rightarrow\left[{}\begin{matrix}x\ge3\\x< 2\end{matrix}\right.\)

c/

\(\frac{x^2+x-3}{x^2-4}-1\le0\Rightarrow\frac{x+1}{x^2-4}\le0\Rightarrow\frac{x+1}{\left(x-2\right)\left(x+2\right)}\le0\Rightarrow\left[{}\begin{matrix}x< -2\\-1\le x< 2\end{matrix}\right.\)

d/

\(\frac{4x^2-8x+6+x^2-x-6}{2\left(x^2-x-6\right)}>0\Rightarrow\frac{x\left(5x-9\right)}{2\left(x+2\right)\left(x-3\right)}>0\Rightarrow\left[{}\begin{matrix}x>3\\0< x< \frac{9}{5}\\x< -2\end{matrix}\right.\)

e/

\(\frac{x^2+3x+2}{2x+3}-\frac{2x-5}{4}\ge0\Rightarrow\frac{4x^2+12x+8-\left(2x-5\right)\left(2x+3\right)}{4\left(2x+3\right)}\ge0\)

\(\Rightarrow\frac{28x+23}{4\left(2x+3\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-\frac{23}{28}\\x< -\frac{3}{2}\end{matrix}\right.\)

11 tháng 1 2020
https://i.imgur.com/NIunWu5.jpg
16 tháng 12 2019

hình như đk của ý a và b ngược nhau đây