cho tam giác ABC cân tại A có góc A bằng 30 độ , BC=2.Trên AC lấy D sao cho AD=căn 2 . vẽ tam giác BEC vuông cân tại E nằm trong tam giác ABC. tính góc ABD b, so sánh 3 cạnh của tam giác BCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ tam giác EBC vuông cân tại E trong tam giác ABC
\(\widehat{EBC}=45^o\)
Ta có : EB2 + EC2 = BC2
2EB2 = 4 ; EB2 = 2 ; EB = \(\sqrt{2}\)
\(\Rightarrow\)EB = AD = \(\sqrt{2}\)
\(\Delta BAE\)= \(\Delta CAE\)( c.g.c ) suy ra : \(\widehat{BAE}=\widehat{CAE}=15^o\)
\(\widehat{ABC}=\left(180^o-30^o\right):2=75^o\)
\(\widehat{ABE}=75^o-45^o=30^o\)
\(\Rightarrow\)\(\widehat{ABE}=\widehat{BAD}=30^o\)
\(\Delta ABD=\Delta BAE\)( c.g.c ) suy ra : \(\widehat{ABD}=\widehat{BAE}=15^o\)
b) xét : \(\Delta DBC\)có : \(\widehat{DBC}=75^o-15^o=60^o\); \(\widehat{DCB}=75^o\)và \(\widehat{BDC}=45^o\)
suy ra : \(\widehat{BDC}< \widehat{DBC}< \widehat{DCB}\left(45^o< 60^o< 75^o\right)\)
Do đó : BC < CD < BD
1: AC=12cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
2: Xét ΔABC vuông tại A và ΔAEC vuông tại A có
AB=AE
AC chung
Do đó: ΔABC=ΔAEC
Suy ra: CB=CE
\(\Delta ABC\)cân tại A nên\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{BAC}}{2}=75^0\)
Trên nửa mặt phẳng bờ BC chứa A lấy E sao cho\(\widehat{B_1}=\widehat{C_1}=45^0\)
=>\(\widehat{ABE}=75^0-45^0=30^0;\Delta EBC\)vuông cân tại E =>\(BE=EC=\frac{BC}{\sqrt{2}}=\sqrt{2}\left(cm\right)\)(định lí Pitago)
\(\Delta ABE,\Delta BAD\)có AB chung ; BE = AD\(\left(=\sqrt{2}cm\right)\);\(\widehat{ABE}=\widehat{BAD}\left(=30^0\right)\)
\(\Rightarrow\Delta ABE=\Delta BAD\left(c.g.c\right)\Rightarrow\widehat{A_1}=\widehat{B_2}\)
Lại có\(\Delta AEB=\Delta AEC\left(c.c.c\right)\)nên\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=15^0\Rightarrow\widehat{B_2}=15^0\)
\(\Rightarrow\widehat{D_1}=\widehat{BAD}+\widehat{B_2}=45^0\)(\(\widehat{D_1}\)là góc ngoài\(\Delta ABD\)) ;\(\widehat{DBC}=75^0-15^0=60^0\)
\(\Delta BDC\)có\(\widehat{D_1}< \widehat{DBC}< \widehat{DCB}\left(45^0< 60^0< 75^0\right)\)nên BC < DC < BD
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ và DA=DE
c: DA=DE
DE<DC
=>DA<DC
Không mất tính tổng quát. g/s : AC>AB
Trên đoạn AB lấy F sao cho AE=AF
Xét tam giác AED và tam giác AFD có:
AE=AF
AD chunh
^EAD=^FAD ( DA là phân giác góc A)
=> Tam giác AED =Tam giác FFD
=> DE=DF (1)
Ta lại có:
^DFB =^DAF+^ADF =^DAE+^ADE=^CED ( các cặp góc bằng nhau, tính chất góc ngoài của tam giác)
=> ^DFB=^CED
mà ^CED=^CBA ( cùng phụ góc ECD)
=> ^DFB=^CBA
=> Tam giác DFB cân
=> DF=DB (2)
Từ (1) , (2) => DE=DB và ED vuông BD
=> Tam giác BDE vuông cân
b) Tam giác BDE vuông cân
=> ^^DBE=^DEB=45^o
+)Xét tam giác AEB có: ^EAB =90^o; ^BEA=^BCE+^CBE=^ACB+^DBE=30^o+45^o=75^o (tính chất góc ngoài)
=> ^EBA=90^o-^EAB=90^o-75^o=15^o
+)Xét tam giác CED vuông tại D có góc C bằng 30 độ
=> CE=2ED=\(2\sqrt{3}\)
Áp dụng định lí pitago
CD^2=CE^2-ED^2=9 => CD=3
Tam giác EDB vuông cân
\(DB=DE=\sqrt{3}\)
Áp dụng định li pitago
\(EB^2=DB^2+DE^2=6\Rightarrow EB=\sqrt{6}\)
Trog tam giác BEC có: \(EC=2\sqrt{3};BC=3+\sqrt{3};BE=\sqrt{6}\)