1x2+2x3+3x4+.........2013x2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
Nguồn: Tính tổng: 1x2 + 2x3 + 3x4 +...+ 2019x2020 + 2020x2021 - Hoc24
Đặt A=1.2+2.3+3.4+.........+2019.2020+2020.2021A=1.2+2.3+3.4+.........+2019.2020+2020.2021
⇒3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3⇒3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3
=1.2.3+2.3.(4−1)+3.4.(5−2)+.....+2020.2021.(2022−2019)=1.2.3+2.3.(4−1)+3.4.(5−2)+.....+2020.2021.(2022−2019)
=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2020.2021.2022−2019.2020.2021=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2020.2021.2022−2019.2020.2021
=2020.2021.2022=2020.2021.2022
⇒A=2020.2021.20223
kết quả là:2727117120