A u x y z t B v n m m'
Cho hình vẽ:
Gọi Am là tia phân giác của góc xAB; Bn là tia phân giác của góc ABt. Vẽ tia Am' là tia đối của tia Am. Chứng minh Am // Bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x y x' y' A B M N
CM: a) Do AM là tia p/giác của góc xAB nên :
\(\widehat{xAM}=\widehat{MAB}=\frac{\widehat{xAB}}{2}\)
Do BN là tia p/giác của góc ABy' nên :
\(\widehat{ABN}=\widehat{NBy'}=\frac{\widehat{ABy'}}{2}\)
Mà \(\widehat{xAB}=\widehat{ABy'}\) (so le trong vì xy // x'y')
=> \(\widehat{MAB}=\widehat{ABN}\)
mà 2 góc này ở vị trí so le trong
=> AM // BN (Đpcm)
b) Xét t/giác AMB và t/giác BNA
có : \(\widehat{MAB}=\widehat{ABN}\)(cmt)
AB : chung
\(\widehat{MBA}=\widehat{NAB}\) (so le trong vì xy // x'y')
=> t/giác AMB = t/giác BNA (g.c.g)
=> \(\widehat{AMB}=\widehat{ANB}\)(2 góc t/ứng)
mik quên viết hình mà các bạn thử đoán hình giúp mik với ạ
Lỗi không vẽ hình được nha bạn !!!
Bài 10 :
a) Qua B vẽ đường thẳng song song với AD cắt AC tại M .
Ta có : \(\widehat{B_1}=\widehat{A}_1,\widehat{M}=\widehat{A}_2,\)mà \(\widehat{A}_1=\widehat{A}_2\)
( vì AD là tia phân giác \(\widehat{BAC}\))
Suy ra \(\widehat{B}_1=\widehat{M},\)nên \(\Delta ABM\)cân đỉnh A .
Từ đó có AM = AB = c
\(\Delta ABM\)có MB < AM + AB = 2c
\(\Delta ADC\)có MB // AD ,nên \(\frac{AD}{MB}=\frac{AC}{MC}\)
( Hệ quả của định lí Ta - lét ) , do đó
\(AD=\frac{AC}{MC}.MB< \frac{AC}{AC+AM}.2c=\frac{2bc}{b+c}\)
b) Từ a) có \(\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)
Tương tự có \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right),\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài 8 :
\(\widehat{D}_1=\widehat{D}_2\Rightarrow\frac{MA}{MB}=\frac{DA}{DB}\Leftrightarrow MA.DB=MB.DA\left(1\right)\)
Mặt khác AM . BD . CN = AN . CD . BM ( 2 )
Chia từng vế của các đẳng thức ( 1 ) và ( 2 ) ta được :
\(\frac{MA.DB}{AM.BD.CN}=\frac{MB.DA}{AN.CD.BM}\)
Rút gọn được \(\frac{1}{CN}=\frac{DA}{AN.CD}\) hay \(\frac{AN}{CN}=\frac{DA}{CD}\)
=> DN là tia phân giác của góc ADC
Bài 9 :
Ta tính được : BC = 10 cm => MC = 5cm ,áp dụng tính chất phân giác trong tam giác có :
\(\frac{AB'}{B'C}=\frac{AB}{AC}=\frac{6}{10}=\frac{3}{5}\)
\(\Rightarrow\frac{AB'}{3}=\frac{B'C}{5}=\frac{AC}{8}=1\Rightarrow AB'=3cm\)
B'C = 5cm
=> \(\Delta IMC=\Delta IB'C\left(c.g.c\right)\Rightarrow\widehat{IMC}=\widehat{IB'C}\)
\(\Rightarrow\widehat{AB'B}=\widehat{IMB}\)mà \(\widehat{B}_1=\widehat{B}_2\Rightarrow\widehat{BIM}=\widehat{BAC}=90^o\)
Vậy số đo góc BIM là 90o
Củng giống bạn ✰๖ۣۜŠɦαɗøω✰ thôi,nhưng để tránh spam mình sẽ gộp lại giúp bạn nhé !
Ảnh thứ 2 bạn vào TKHĐ của mình nhìn cho rõ nhé !