Tính :
a ) ( a + b ) - ( - c + a + b )
b ) -(x + y ) + ( -Z + x + y )
c) ( m - n + p ) + ( -m + n + p )
Giúp nhaa
chiều đi học rồi ...
Helpp mee
Bạn nào giỏi trả lời giúp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)-\left(-c+a+b\right)\)
\(=a+b+c-a-b\)
\(=\left(a-a\right)+\left(b-b\right)+c\)
\(=c\)
\(-\left(x+y\right)+\left(-z+x+y\right)\)
\(=-x+-y+-z+x+y\)
\(=\left[\left(-x\right)+x\right]+\left[\left(-y\right)+y\right]+-z\)
\(=-z\)
\(\left(m-n+p\right)+\left(-m+n+p\right)\)
\(=m-n+p-m+n+p\)
\(=\left(m-m\right)+\left(n-n\right)+\left(p+p\right)\)
\(=2p\)
có thể nói 1 chút không ? nếu cái này là thực sự -- bên hocmai tổ chức thi thì không nên đăng câu hỏi lên hoc24 vì có vẻ ko phù hợp lắm ( có thể gọi là gian lận )
Mik nghĩ vậy
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0
Ta có:
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Vì \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\) nên
\(\Rightarrow\hept{\begin{cases}\left(ay-bx\right)^2=0\\\left(az-cx\right)^2=0\\\left(bz-cy\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}ay-bx=0\\az-cx=0\\bz-cy=0\end{cases}\Leftrightarrow}\hept{\begin{cases}ay=bx\\az=cx\\bz=cy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{c}{z}\end{cases}}\)( Theo tính chất của tỉ lệ thức : tích trung tỉ bằng tích ngoại tỉ)
\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)( Với x, y, z khác 0)
Vậy \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)Với x, y, z khác 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Ngày 5 bà mẹ mua được 9 chiếc bánh .Ngày 2 bà mua dược gap 121 lần ,1 cái bánh giá là 6000đ.Số tiền của tất cả chiếc bánh đó là bao nhiêu?
Lưu ý:bài này phải làm tóm tắt nhé và bài ấy dành cho học sinh lớp 7
hở 💜Cute_Shop💜 tag thử 💜Cute_Shop💜 💜Cute_Shop💜💜Cute_Shop💜
mấy người kia tag nii vẫn nhận đc thông báo mà
mk biết
khi bạn gửi câu hỏi mà muốn viết phân số
Bạn nhấn vào kí tự thứ 3 hình chữ M nằm ngang rồi tim hình phân số và chọn là song
Ta cá:Vi x<y nen \(\frac{a}{m}< \frac{b}{m}\)
\(\Rightarrow a< b\)
\(\Rightarrow a+a< a+b\)
\(\Rightarrow2a< a+b\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)
\(\Rightarrow x< z\left(1\right)\)
Ta lại cá:
\(a< b\)
\(\Rightarrow a+b< b+b\)
\(\Rightarrow a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow z< y\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow x< z< y\)(điều phải chứng minh)
Nhớ h cho mk nha
a) (a+b)-(-c+a+b)
= a+b+c-a-b
= c
b) -(x+y)+(-z+x+y)
= -x-y-z+x+y
= x
c) ( m-n+p)+(-m+n+p)
= m-n+p-m+n+p
= p+p
= 2p
a,a+b+c-a-b
= c
b,= -x-y-z+x+y
= -z
c,= m-n+p-m+n+p
= 2p