Tìm min \(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+18\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = x - 2 => x - 1 = a + 1; x - 3 = a -1
Khi đó, A = (a+1)4 + (a - 1)4 + 6.(a + 1)2 .(a - 1)2
A = [(a + 1)2 + (a - 1)2]2 + 4.(a + 1)2 .(a - 1)2
= (a2 + 2a + 1 + a2 - 2a + 1)2 + 4.(a2 - 1)2
= (2a2 +2)2 + 4.(a4 - 2a2 + 1)
= 4a4 + 8a2 + 4 + 4a4 - 8a2 + 4 = 8a4 + 8 \(\ge\) 8 với mọi a
=> min A = 8 khi a = 0 <=> x - 2 = 0 <=> x= 2
Ta có: `A` lớn nhất `<=> (2015)/(18+12|x-6|)` nhỏ nhất.
`<=> 18+12|x-6|` nhỏ nhất.
`<=> 12|x-6|` nhỏ nhất, do `18` là hằng.
`<=> 12|x-6|=0`
`<=> x=6 => A=2015/18`
Vậy...
`b, B>=x+1/3+1-x`
`=4/3`.
Đẳng thức xảy ra `<=> x+1/3=1-x`
`<=> x=2/3`.
Vậy...
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
min ( A ) = 28
Nếu mình đúng thì các bạn k mình nhé
Mình làm được gần hết bạn tới đoạn thay điều kiện rồi nhưng chưa tìm được x