K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

hello

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

17 tháng 3 2021

program tim_n;
uses crt;
var tong,n,i:word;
begin
  clrscr;
  n:=1;tong:=0;
  while tong<500 do
  begin
    for i:=1 to n do tong:=tong+i;
    if tong<500 then begin tong:=0;n:=n+1;end
    else n:=n-1;
  end;
  write('so n thoa man dieu kien la:',n);
  readln;
end. 

uses crt;

var i,n,t:integer;

begin

clrscr;

write('Nhap n='); readln(n);

t:=0;

for i:=1 to 500 do 

begin  

t:=t+i;

if t>500 then 

begin

writeln(i);

break;

end;

end;

readln;

end.

18 tháng 4 2019

Tổng của 5 số nguyên dương liên tiếp có dạng:  \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)

(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)

Làm tương tự với tổng của 7 số và 9 số

Suy ra số cần tìm chia hết cho 5,7,9

Mà BCNN(5,7,9)=315 nên số cần tìm là 315

18 tháng 4 2019

mơn bạn nha