Cho hình thoi ABCD ,Hình bình hành ABEC và HCN ABFD .
Biết DC= 5cm , AC= 8cm ,, BD= 6cm.
a)Tính độ dài cạnh BE và cạnh CE.
b)Tính CV ABEFD.
Mình cần gấp cảm ơn nhiều lắm ạ!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh a. ON//(SAB) và b. (OMN)//(SCD), chúng ta có thể sử dụng các định lý và quy tắc trong hình học không gian.
a. Để chứng minh ON//(SAB), ta có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Theo định lý này, nếu có hai đường thẳng cắt một mặt phẳng và các đường thẳng này đều song song với một đường thẳng thứ ba trong mặt phẳng đó, thì hai đường thẳng đó cũng song song với nhau. Áp dụng định lý này, ta có thể chứng minh ON//(SAB) bằng cách chứng minh rằng ON và AB đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.
b. Để chứng minh (OMN)//(SCD), ta cũng có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Tương tự như trường hợp trước, ta cần chứng minh rằng OM và CD đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.
Tuy nhiên, để chứng minh chính xác các phần a và b, cần có thêm thông tin về các góc và độ dài trong hình chóp S.ABCD.
Thiếu dữ kiện hình chữ nhật
Tính diện tích hình thoi
Gọi O là giao điểm của hai đường chéo .
BD = 8cm => BO= 4 cm ( vì ABCD là hình thoi )
Có AB = 5 cm ( gt ) và \(BD\perp AC\) ( vì ABCD là hình thoi)
Áp dụng định lí Py-ta-go cho tam giác vuông AOB ta có :
\(AB^2=BO^2+AO^2\)
\(\Rightarrow5^2=4^2+AO^2\)
\(\Rightarrow AO^2=25+16\)
\(\Rightarrow AO=\sqrt{41}\)
\(\Rightarrow AC=\sqrt{41}^2=41\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}.41.8=164\left(cm^2\right)\)
Cạnh hình thoi ABCD là : 60 : 4 = 15 cm => tổng độ dài AM và MB là AB = 15 cm
Hiệu độ dài MB và AM là 5 cm
Độ dài cạnh MB là: (15 +5) : 2 = 10 cm
Độ dài cạnh AM là: 15 - 10 = 5 cm
a) Hình bình hành MBCN có: MB = NC = 10 cm; MN = BC = 15 cm
Chu vi hình MBCN là: MB + BC + CN + NM = 10 + 15 + 10 + 15 = 50 cm
b) Chiều cao hình thoi ABCD là: 216 : 15 = 14,4 cm
Chiều cao hình bình hành AMND bằng chiều cao hình thoi ABCD ; có đáy là AM
Diện tích hình bình hành AMND là: 14,4 x 5 = 72 cm2
Hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (gt)
⇒O là trung điểm của AC và BD
⇒AO=AC2 và DO=BD2
=> AO=6/2=3(cm) và DO = 8/2= 4cm
AC vuông góc BD TẠI O ( vì ABCD là hình thoi )
tam giác ADO vuông góc tại O có AD bình = AO bình + DO bình ( định lý pytago)
=> AD2 =3 bình + 4 bình = 25 => AD= 5cm
Vậy AB=BC=DC=AD=5cm
Độ dài cạnh AD là:
6:2 = 3(cm)
Vì ABCD là hình bình hành nền AB = CD = 6cm
Tổng độ dài hai cạnh AD và DC là:
3 + 6 = 9cm