K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

a: BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\sqrt{4\cdot9}=6\left(cm\right)\\AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\\AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\end{matrix}\right.\)

b: AM=AC/2=1,5*căn 13(cm)

Xét ΔAMB vuông tại M có

\(\tan AMB=\dfrac{AB}{AM}=\dfrac{2\sqrt{13}}{1.5\sqrt{13}}=\dfrac{4}{3}\)

=>\(\widehat{AMB}\simeq53^0\)

=>\(\widehat{BMC}=180^0-53^0=127^0\)

c: Xét tứ giác AKHB có \(\widehat{AKB}=\widehat{AHB}=90^0\)

nên AKHB là tứ giác nội tiếp

=>\(\widehat{BKH}=\widehat{BAH}\)

mà \(\widehat{BAH}=\widehat{C}\)

nên \(\widehat{BKH}=\widehat{C}\)

có thể vẽ hình giúp e đc k ạ?

NV
13 tháng 1 2024

3.

\(\Delta'=\left(m-1\right)^2-\left(-2m-1\right)=m^2+2>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m-1\end{matrix}\right.\)

\(2x_1+3x_2+3x_1x_2=-11\)

\(\Leftrightarrow2\left(x_1+x_2\right)+x_2+3x_1x_2=-11\)

\(\Leftrightarrow4\left(m-1\right)+x_2+3\left(-2m-1\right)=-11\)

\(\Leftrightarrow x_2=2m-4\)

Thế vào \(x_1+x_2=2\left(m-1\right)\)

\(\Rightarrow x_1=2\left(m-1\right)-\left(2m-4\right)=2\)

Thế \(x_1=2;x_2=2m-4\) vào \(x_1x_2=-2m-1\)

\(\Rightarrow2\left(2m-4\right)=-2m-1\)

\(\Rightarrow m=\dfrac{7}{6}\)

NV
13 tháng 1 2024

4.

\(\Delta'=\left(m+1\right)^2-\left(m^2-m-5\right)=3m+6>0\Rightarrow m>-2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2-m-5\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt nên:

\(x_1^2+2\left(m+1\right)x_1+m^2-m-5=0\)

\(\Rightarrow x_1^2=-2\left(m+1\right)x_1-m^2+m+5\)

Từ đó ta được:

\(x_1^2-2\left(m+1\right)x_2+m^2-m-5=16\)

\(\Leftrightarrow-2\left(m+1\right)x_1-m^2+m-5-2\left(m+1\right)x_2+m^2-m-5=16\)

\(\Leftrightarrow-2\left(m+1\right)\left(x_1+x_2\right)=16\)

\(\Leftrightarrow4\left(m+1\right)^2=16\)

\(\Leftrightarrow\left(m+1\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3< -2\left(loại\right)\end{matrix}\right.\)

NV
13 tháng 1 2024

5.

\(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\)

Pt có 2 nghiệm pb khi \(\left(m-2\right)^2>0\Rightarrow m\ne2\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=x_1+x_2\)

\(\Leftrightarrow m^2-2\left(m-1\right)=m\)

\(\Leftrightarrow m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\left(loại\right)\end{matrix}\right.\)

1.

\(\Delta=9+4m>0\Rightarrow m>-\dfrac{9}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-m\end{matrix}\right.\)

\(5x_1+5x_2=1-\left(x_1x_2\right)^2\)

\(\Leftrightarrow5\left(x_1+x_2\right)=1-\left(x_1x_2\right)^2\)

\(\Leftrightarrow5.\left(-3\right)=1-\left(-m\right)^2\)

\(\Leftrightarrow m^2=16\Rightarrow\left[{}\begin{matrix}m=4\\m=-4< -\dfrac{9}{4}\left(loại\right)\end{matrix}\right.\)

NV
13 tháng 1 2024

2.

\(\Delta=\left(2m+1\right)^2-4\left(m^2+1\right)=4m-3>0\Rightarrow m>\dfrac{3}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+1\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=13\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=13\)

\(\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)=11\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=11\)

\(\Leftrightarrow\left(2m+1\right)^2-2\left(m^2+1\right)+2\left(2m+1\right)=11\)

\(\Leftrightarrow2m^2+8m-10=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-5< \dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)

20 tháng 10 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AM là đường cao

nên \(\left\{{}\begin{matrix}AB\cdot AC=AM\cdot BC\\AB^2=BM\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AM=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\\BM=\dfrac{12^2}{20}=7.2\left(cm\right)\end{matrix}\right.\)

c: ΔABM vuông tại M có ME là đường cao

nên \(AE\cdot AB=AM^2\)

ΔAMC vuông tại M

=>\(MA^2+MC^2=AC^2\)

=>\(MA^2=AC^2-MC^2\)

=>\(AE\cdot AB=AC^2-MC^2\)

a: ΔAMN vuông tại A

mà AI là đường trung tuyến 

nên AI=IM=IN=MN/2

=>I là tâm đường tròn ngoại tiếp ΔAMN

b: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

16 tháng 11 2021

a, song song với gương

A B A' B'

b, vuông góc với gương

A' B' A B

11)Bn share in chỗ nào bn muốn

12,

a,

S R N N' R'

16 tháng 11 2021

12,

a+b,nha bn! 

16 tháng 11 2021

6:

S R N I

\(i=90^o-40^o=50^o\)

\(i=i'\Leftrightarrow i'=50^o\)

7:

8:

A B A' B'

9:

C1:

S S'

C2:

S S' N N' R R' I I'

16 tháng 11 2021

Cảm ơn bạn :3 <3

9 tháng 4 2022

1.would met -> meet

2.B.he-> who

3.watching -> watch

4.more happier-> bỏ more

5. is planted -> was planted

6. boring -> bored

7. which -> where

8. many -> any

9. good -> best

10. learning -> to learn

AH
Akai Haruma
Giáo viên
27 tháng 1 2024

Bài 3:

Nếu đáy lớn được tăng thêm 5 cm thì diện tích sẽ tăng một phần bằng 5 x chiều cao : 2

Vậy chiều cao của hình thang là:
$20\times 2:5=2$ (m) 

Diện tích hình thang ban đầu là:

$50\times 2:2=50$ (m2)

29 tháng 1 2016

Hình như là:

Headache : Đau đầu

Stomachache: Đau bụng

Temperature:Nhiệt độ

Earache: Đau tai

Sore throat: Đau cổ họng

Sore Eyes:Đau mắt

Cold:Cảm lạnh

29 tháng 1 2016

mấy cái bệnh tật đó thì ghi làm gì