tìm GTNN
A=l x - 2021 l + l x - 2022 l + l x - 2023 l
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C\ge2021\)
Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\3y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(C_{Min}=2021\) khi \(x=\dfrac{3}{2}\) và \(y=-\dfrac{1}{3}\)
Vì |2x - 3| \(\ge\) 0, \(\forall\)x ; |3y + 1| \(\ge\) 0,\(\forall\)y
\(\Rightarrow\) C = 2020|2x - 3| + 2021|3y + 1| + 2021 \(\ge\) 2021, \(\forall\)x,y
Dấu " = " xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left|2x-3\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy Cmin = 2021 với \(x=\dfrac{3}{2};y=-\dfrac{1}{3}\)
\(\dfrac{x-1}{2019-2}+\dfrac{x-3}{2019}=\dfrac{x-5}{2021}+\dfrac{x-7}{2023}\)
\(\Leftrightarrow\dfrac{x-1}{2017}+\dfrac{x-3}{2019}=\dfrac{x-5}{2021}+\dfrac{x-7}{2023}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2017}+1\right)+\left(\dfrac{x-3}{2019}+1\right)=\left(\dfrac{x-5}{2021}+1\right)+\left(\dfrac{x-7}{2023}+1\right)\)
=>x+2016=0
hay x=-2016
\(\left|x-2010\right|+\left|x-2012\right|=\left|x-2010\right|+\left|x-2012\right|\ge\left|x-2010-x+2012\right|=2\)
\(\left|x-2011\right|\ge0\)
=> \(B\ge2\)
dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2010\right).\left(-x+2012\right)\ge0\\x=2011\end{cases}}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow x=2011}\)
Áp dụng bất đẳng thức giá trị tuyệt đối |a| + |b| \(\ge\) |a + b| ta có:
A = |x - 2001| + |x - 1| = |x - 2001| + |1 - x| \(\ge\) |(x - 2001) + (1 - x)| = |-2000| = 2000
=> A nhỏ nhất là 2000 ; chẳng hạn tại x = 1
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2021+|x-2023|=|x-2021|+|2023-x|\geq |x-2021+2023-x|=2$
$|x-2022|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2021+|x-2022|+|x-2023|\geq 2+0=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt được khi:
$(x-2021)(2023-x)\geq 0$ và $x-2022=0$
$\Leftrightarrow x=2022$